Разбираемся, как работает Wi-Fi, почему не нужен мощный роутер и что реально влияет на работу сети

Итак, пусть изначально у нас есть некий стандартный роутер/точка доступа с официально разрешенными для нашей страны параметрами по мощности сигнала, который работает «в полную силу», то есть на мощности передатчика 100%. Напоминаю, это 23 дБм / 200 мВт в диапазоне 5ГГц или 20 дБм / 100 мВт в диапазоне 2,4 ГГц.

Примечание: единица измерения мощности беспроводного сигнала измеряется в дБм или мВт.

Излучаемый роутером/ТД сигнал распространяется вокруг, и попадает на приемные устройства, существенно ослабнув «по пути». Какой примерно сигнал мы имеем на стороне клиента (смартфона, планшета, ноутбука и т.д.)? Ну, к примеру, -50 дБм / 0.00001 мВт или -67 дБм / 0.0000002 мВт.

В то же время беспроводной клиент, который обычно представляет собой мобильное устройство, имеет задачу не только подключиться к сети, но и подольше проработать от батареи. Поэтому клиент не «выбрасывает» напрасно энергию в эфир. Мощность передатчика клиентов обычно находится на уровне 11-17 дБм (12.5-50 мВт). То есть, эта мощность в от 8 до 2 раз меньше, чем мощность сигнала роутера, если говорить об устройствах в 2,4 ГГц диапазоне.

При этом у беспроводных роутеров/ТД всегда есть CCA Threshold – порог слышимости сигнала, и если уровень сигнала не превышает этот порог, роутер/ТД считает его шумом. Предположим, этот порог — 82 дБм. Таким образом, наш условный роутер с 5 дБи антеннами будет работать с устройствами, уровень сигнала от которых в точке размещения роутера не менее -87 дБм (-87 дБм сигнал + 5 дБи коэффициент усиления антенны роутера = -82 дБм).

Примечание: разумеется, это чисто условный пример, в котором все параметры условно-типичные и даны для понимания ситуации; ваш роутер может иметь антенны с коэффициентом усиления отличающимся от 5 дБи, и иной порог, например — для определенного оборудования Ubiquiti в целом стабильная связь гарантируется при уровне сигнала до -70дБм; порог для сетей 5ГГц ниже чем для 2,4 ГГц даже на одном и том же оборудовании и т.п., но это нюансы, в которые мы углубляться не будем.

В целом для роутера и клиента можно руководствоваться простым правилом: при прочих равных условиях, сигнал теряет 6 дБ мощности (т.е. в 4 раза) при увеличении расстояния от передатчик в 2 раза.

Однако, как было сказано выше, мощность сигнала роутера/ТД обычно в 2-8 раз выше, чем на клиентах. И с отдалением от роутера/ТД неизбежно возникнет ситуация, когда клиент будет слышать сигнал роутера хорошо, а вот роутер будет слышать более слабый сигнал клиента на «грани» возможностей или не слышать вообще (так как уровень сигнала клиента будет опускаться за порог слышимости CCA Threshold). И возникнет странная ситуация, когда сигнал Wi-Fi от роутера на клиентском устройстве вроде бы ловится, но связи нет или она постоянно «отваливается».

Причина в асимметрии «силы» связи: к примеру, когда клиент мощностью 14 дБм слышит роутер/ТД на -84 дБм (-84 дБм + 2 дБи коэффициент усиления антенны клиента = условный порог слышимости -82 дБм), до роутера/ТД доходит сигнал от клиента лишь на уровне -90 дБм, что находится ниже порога слышимости. При указанных условиях беспроводная связь гарантированно оборвется.

То есть, в каналах беспроводной связи уже при типичных стандартных параметрах работы роутеров/ТД возникает существенная проблема со связью, вызванная асимметрией мощностей Wi-Fi излучателей. И если дополнительно поднять мощность сигнала на одной стороне (роутере/ТД), то проблема только усугубится. Перемещаясь с мобильными клиентами, вы все боле часто будете сталкиваться с ситуацией, когда Wi-Fi роутер «теряет» устройства, и именно потому, что у него существенно более сильный сигнал. Клиент «услышит» роутер/ТД, а роутер клиента – нет. Вот почему серьезные производители оборудования не рекомендуют использовать Wi-Fi роутеры и точки доступа на максимальной мощности. Привожу в доказательство фрагмент презентации Cisco (с полной презентацией можно ознакомится здесь).

Даже наоборот, для устранения асимметрии и получения стабильной связи рекомендуется понизить мощность Wi-Fi передатчика в роутере/ТД.

Но если не мощность сигнала, то что же тогда определяет скорость и надежность Wi-Fi соединения?

Скорость подключения, которая ни о чем не говорит.

Скорость подключения по Wi-Fi определяют три параметра: тип модуляции, количество потоков (зависит от количества антенн) и ширина радиоканала.

Но «теоретическая» скорость подключения на основе вышеуказанных параметров имеет мало общего с реальной скоростью работы беспроводной сети. Что же оказывает влияние на эту скорость?

Дело в том, что модуляция в сети непостоянна. Самые прогрессивные модуляции на сегодня — 256 QAM и 1024 QAM (модуляция определяет, сколько бит передается в одном радиосимволе). Но! Эти плотные модуляции очень чувствительны к шуму. И достигаются они только при высоком соотношении сигнал/шум (SNR), когда клиент находится близко к Wi-Fi роутеру/ТД. С удалением от роутера/ТД растет шум, SNR падает, модуляция упрощается для надежности соединения и, как следствие – падает скорость связи. Плюс свою лепту в проблемы сети добавляет интерференция.

Интерференция и шум

Причиной коллизий из-за интерференции в Wi-Fi сетях являются беспроводные устройства, работающие на том же или близком канале. Это вполне могут быть соседские Wi-Fi устройства, а не ваши, и повлиять на их работу вы не сможете.

Примечание: в частности, поэтому рекомендуется использовать непересекающиеся каналы для соседних Wi-Fi роутеров; непересекающиеся каналы помогают избегать интерференции (хотя полностью проблему, конечно, не решают – проблемы растут по мере удаления от передатчиков).

Итак, интерференция – это помеха, вызываемая радиоволнами соседних Wi-Fi устройств.

Источником шума в беспроводных сетях являются не Wi-Fi устройства, использующие для работы тот же радиочастотный диапазон, что и Wi-Fi оборудование. Это различные Bluetooth устройства, 2,4ГГц и 5 ГГц ресиверы, радиотелефоны, микроволновые печи и другое оборудование.

Примечание: впрочем, поврежденные пакеты Wi-Fi и сигналы от устройств за пределами порога CCA Threshold тоже считаются шумами. Сигналы от Wi-Fi устройств, работающих отдаленно от роутера на том же канале, не считаются интерференцией, поскольку сигналы таких устройств не могут быть демодулированы.

Как уменьшить интерференцию и шум в Wi-Fi сети? Для домашнего пользователя я вижу только два варианта действий: перейти на другой канал и провести деагрегацию каналов. Так как объединение каналов уже само по себе ухудшает SNR: каждый дополнительный 20 MГЦ канал отнимает примерно 3dB у показателя SNR.

Примечание: уменьшение ширины канала в 10 раз увеличивает соотношение сигнал-шум в те же 10 раз. Вот почему в стандарте 802.11ax реализована идея разделения канала на дополнительные поднесущие. Сужение канала повышает соотношение сигнал/шум, что и дало возможность использовать прогрессивную кодировку 1024 QAM.

Но решающее влияние на быстродействие вашей сети будет оказывать не соотношение сигнал/шум, не интерференция как таковая, не мощность беспроводного сигнала, и уж тем более не количество беспроводных сетей вокруг, как ошибочно думают многие. Быстродействие вашей беспроводной сети будет в значительной степени определяться утилизацией канала. Ну, если вы живете не в тайге среди медведей, конечно. Там Wi-Fi каналы утлилизировать будет некому, кроме вас.

Похожее:  Wifi adapter wireless in linux

Проблемы утилизации

Что такое утилизация канала? И почему она сильно влияет на скорость работы Wi-Fi сети? Утилизация — это доля эфирного времени, которую занимают все работающие на данном канале устройства, и чьи сигналы могут быть демодулированы нашим Wi-Fi роутером/ТД, то есть энергия которых выше за CCA Threshold. По сути, пакеты нашей сети «втискиваются» в доступные узкие эфирные рамки между пакетами других сетей, работающих в этом же радиодиапазоне. Увы, но с максимальной производительностью наша беспроводная сеть работает лишь тогда, когда соседские сети на используемом канале не слишком активны или простаивают (а лучше всего – если они на нем отсутствуют). Вот почему настоятельно рекомендуется уходить на самые «незанятые» Wi-Fi радиоканалы. Там банально меньше «утилизаторов» сети.

Примечание: утилизация важна потому, что в Wi-Fi сетях доступ эфирному диапазону реализован по протоколу CSMA/CA (множественный доступ с контролем несущей и обнаружением коллизий), согласно которому беспроводные устройства периодически «слушают» свою частоту на канале, и если она занята, передача данных откладывается, а затем через некоторое время устройство снова делает попытку прослушивания частоты.

Отметим, что утилизация канала никак не влияет на отображаемую в системе скорость беспроводного подключения, но в то же время имеет огромное влияние на реальную практическую производительность беспроводной сети.

Живой пример: стоит одному из беспроводных пользователей поставить на закачку какой-нибудь крупный файл (не говоря уже о торрентах), не выставив разумных ограничений на темп загрузки, как скорость работы всех остальных пользователей на используемом таким юзером Wi-Fi канале существенно упадет, именно из-за утилизации канала. Причем неважно, подключены пользователи к этой же сети, или же к ближайшим сетям использующим тот же Wi-Fi канал. Более того, эффект негативно скажется и на соседних Wi-Fi каналах тоже.

Какой уровень утилизации канала может быть приемлем? Компания Cisco полагает что при утилизации канала более 80%, «ловить» в сети уже нечего. Нет, сеть, конечно, будет работать и при такой утилизации. Но о работе в чем-то близком к реалтайму речь уже не идет.

Низкая утилизация канала — отлично

Средняя утилизация канала — приемлемо

Примечание: не факт, что на канале, на котором меньше всего Wi-Fi сетей, самая низкая утилизация канала — все зависит от сценариев эксплуатации сетей. Установить канал(ы) с самой низкой утилизацией можно только эмпирическим путем.

Одним из эффективных средств уменьшения канальной утилизации (речь идет о средствах, доступных для домашних пользователей), являются: переход на другой канал, уменьшение количества подключенных клиентов в сети, особенно медленных (возможно стоит перевести их в отдельную сеть), уменьшения количества неподключенных Wi-Fi клиентов в зоне действия сети, а также — уменьшение радиуса действия беспроводного роутера, то есть уменьшение мощности передатчика (это отсечет самых дальних и медленных клиентов, которые долго занимают канал и «тормозят» сеть, а также дальние неподключенные устройства, которые регулярно отправляющие менеджмент-фреймы, в том числе не ваши устройства).

Примечание: для устранения конфликтов с соседними сетями Wi-Fi сейчас введен идентификатор BSS Color (Base Service Station), который помечает каждый пакет, что позволяет роутерам и клиентам определить, какие пакеты передаются от соседних сетей, и просто игнорировать их. Это снижает интерференцию от соседних беспроводных сетей и ускоряет передачу данных, но эта возможность доступна только в новейшем стандарте 802.11ах.

Итог

Как видим, использование роутера с большой мощностью Wi-Fi сигнала вовсе не означает, что ваша сеть будет работать лучше, станет надежнее или «дальнобойнее». Скорее наоборот. Чем более мощный Wi-Fi роутер/ТД и чем больше радиус его покрытия – тем больше интерференции и шумов такое устройство наловит, тем больше будет утилизация беспроводных каналов и меньше – производительность сети. Да еще и соседям такой гаджет будет создавать лишние помехи. Как-то так.

Источник



Дальность действия WI-Fi роутера: максимальное расстояние

Привет, дорогой друг! Сегодня мы рассмотрим вопрос – на какое расстояние действует WiFi роутер. На самом деле точного ответа вам не даст никто, но я постараюсь раскрыть эту проблему как можно шире. На сегодняшний момент почти все роутеры в РФ имеют максимальную мощность в 100 мВт. На дешевых роутерах при установке 2 всенаправленных антенн, аппарат будет бить примерно на 80-100 метров. И тут сразу же многие скажут – что это просто «брехня».

На самом деле так и есть, но бить на такое большое расстояние сможет только маршрутизатор, который стоит в чистом поле, а вокруг нет ни одной живой души. То есть радиоволна бьет максимально далеко. В наших реалиях, вокруг нас обычно очень много стен, людей, домов, который сильно глушат сигнал. Также радиосигнал может отражаться и мешать самому себе. Или соседские роутеры ухудшают связь, проникая своими коварными волнами внутрь квартиры.

ПОМОЩЬ! Если в процессе статьи или после прочтения у вас, дорогие читатели, возникнут вопросы – то смело без отлагательств пишем их в комментариях.

Дальность действия WI-Fi роутера: максимальное расстояние

Стандарты, протоколы и частоты

Давайте коротко расскажу, про стандарты и частоты. На данный момент в вай-фай используются две частоты передачи данных: 2.4 и 5 ГГц. И они также влияют на дальность действия. 5ГГц — это частота, которая пришла к нам недавно. Имеет большую скорость передачи данных, но вот затухает быстрее. Вот 2.4 ГГц на данный момент самая распространенная частота.

Дальность действия WI-Fi роутера: максимальное расстояние

А теперь давайте, отталкиваясь от частот, кратко посмотрим на самые популярные стандарты.

  • 802.11а – передача информации внутри сети до 8 Мбит в секунду. Старый стандарт, но пока ещё используется;
  • 802.11b – тоже старенький стандарт, но на нем пока ещё работают некоторые ноутбуки. Скорость выше 20 Мбит в секунду
  • 802.11g – 50 Мбит в секунду
  • 802.11n – 150 Мбит в секунду. Может также работать и с 5 ГГц частотой
  • 802.11ac – Свыше 1 Гбит в секунду

Как я уже и говорил, пока самым распространенным стандартом является 802.11n, и он используется почти везде. Скорость достаточно высокая и бьет далеко в отличии от того же 802.11ac. Более подробно вы можете почитать про стандарты в этой статье.

Параметры волны

Помимо частоты, мы уже говорили про затухание от препятствий. При чем препятствием будет почти все. Например, если на улице идёт дождь, то мобильная связь, которая использует примерно те же частоты – будет хуже. Также и с вай-фай. У волны есть и параметр естественного затухания. Металлические конструкции, зеркала, а также толстый бетон – почти полностью глушат слабый сигнал.

Похожее:  Проверим wi fi адаптер на ноутбуке

Радиус действия также будет зависеть от коэффициента усиления антенны. И чем он больше, тем дальше бьет радиоволна. Но тут есть и обратная сторона монеты. Дело в том, что с увеличением параметра усиления пучок волн становится тоньше и вытягивается в сторону.

Дальность действия WI-Fi роутера: максимальное расстояние

Посмотрите на картинку выше – с увеличением dB волна конечно же бьет дальше, но вот поймать её становится тяжелее. Такие антенны называют узконаправленные. Другие же антенны с КУ от 3 до 7 dB называют широконаправленные и чаще устанавливаются на дешевые модели. У меня например дома стоит обычный маршрутизатор с двумя такими и бьет не так далеко.

Дальность действия WI-Fi роутера: максимальное расстояние

На дорогих моделях, обычно ставят до 8 и более антенн, которые имеют узкое направление антенны, но больший КУ. За счет этого охват идёт такой же, но радиоволна бьет дальше. Такие аппараты при использовании стандарта «n» могут максимально ловить сигнал уже свыше 150 метров на открытой местности. Советую почитать статью про мощность сигнала тут. Там понятным языком объясняются все тонкости дальности передачи с помощью радиоволн. И после этого вы сами сможете ответить на вопрос – на каком расстоянии радиус действия WiFi будет настолько хорош, чтобы ловить его без помех и потерь.

Увеличить или уменьшить радиус действия WiFi

Для увеличения радиуса действия есть очень много способов. Поэтому поводу писал мой коллега в этой статье. Там понятно объясняется – как в домашних условиях улучшить сигнал и сделать его шире. Но иногда в маленькой квартире связь может быть хуже из-за слишком мощного аппарата. Поэтому мощность надо снижать. Почему это нужно делать – вы узнаете в этой статье.

Источник

Как выбрать точку доступа

Сегодня найдется не так много людей, которые не знают о том, что такое Wi-Fi. Беспроводные сети прочно засели в наших домах, рабочих помещениях, супермаркетах и еще много где. За создание этой самой беспроводной Wi-Fi сети отвечает такое одновременно простое и сложное устройство, как точка доступа (Access Point).

Человек решивший установить себе точку доступа (в любом ее проявлении), в большинстве своем, довольно смутно представляет, что же это такое на самом деле, и что конкретно ему от нее нужно. А ведь без этого вероятность правильно подобрать необходимое устройство крайне невысока, даже с помощью квалифицированного консультанта. А посему, давайте узнаем, что же такое точка доступа, ее функционал и характеристики.

Беспроводная (WI-Fi) точка доступа (ТД) – это устройство, предназначенное для беспроводного подключения клиентов к уже существующей проводной или беспроводной сети. На самом деле все не так страшно, как это звучит. Точка доступа просто берет «интернет», например, с кабеля от ADSL модема/маршрутизатора/. и передает его на беспроводные девайсы, подключенные к этой ТД.

Не стоит путать Wi-Fi точку доступа и Wi-Fi маршрутизатор, поскольку маршрутизатор является более «продвинутым» устройством. Он уже поддерживает создание подключения по различным протоколам (PPPoE, L2TP, PPTP), маршрутизацию трафика, родительский контроль, брандмауэр и т.д.

Зачем же тогда покупать точку доступа, если можно взять маршрутизатор? Причин может быть несколько. Технологии беспроводной передачи довольно быстро совершенствуются и в один прекрасный (на самом деле не очень) момент может наступить осознание, что вам не хватает возможностей нынешнего маршрутизатора, например, поддержки новых стандартов или зоны покрытия.

В обиходе термин точка доступа часто применяют и для маршрутизаторов. Это неправильно и зачастую вносит немалую путаницу.

Режимы работы

Режим точка доступа (Access Point)

В этом режиме устройство подключается к проводной сети и преобразует сигнал в беспроводной.

Режим повторителя/репитера/расширение сети (repeater)

В данном режиме устройство расширяет зону покрытия родительской сети Wi-Fi, путем ее ретрансляции (повторения). Существует отдельный тип точек доступа, который так и называют повторители или расширители беспроводной сети. Некоторые модели могут работать только в этом режиме, а некоторые и, например, в режиме точки доступа.

Режим клиента (Access Point Client/ Wireless Client)

В режиме клиента точка доступа работает как беспроводной сетевой адаптер, получая сигнал беспроводной сети. Клиент подключаются к порту Lan.

Беспроводной мост (Wireless Bridge)

Позволяет беспроводной точке обмениваться данными с другой точкой доступа (маршрутизатором), используется для соединения двух удаленных проводных сетей, посредством Wi-Fi.

Мост с точкой доступа (Bridge with AP)

Аналогичен предыдущему режиму, но дополнительно позволяет создать локальную беспроводную сеть для всех устройств Wi-Fi.

Multi-SSID

В этом режиме устройство может создать до 4 (в большинстве случаев) беспроводных сетей, помеченных различными SSID, и назначить каждому SSID различные настройки безопасности или VLAN. Особенно полезно в ситуации, когда требуются различные политики доступа и функции.

Используемые частоты

Точки доступа Wi-Fi в настоящее время используют две основных частоты: 2.4 ГГц и 5 ГГц . Обычно более дешевые устройства используют только 2.4 ГГц диапазон, более дорогие 5 ГГц, или оба сразу.

Преимущество 5 ГГц сетей заключается в большей скорости соединения и менее «зашумленном» диапазоне, а первое очень сильно зависит от второго. 5 ГГц точек доступа меньше, они дороже, сигнал затухает быстрее, поэтому соседские ТД меньше будут влиять на вашу сеть. Также здесь нет других источников помех, характерных для 2.4 ГГц диапазона — СВЧ-печей, Bluetooth-устройств (мышки, клавиатуры, гарнитуры, колонки), радионянь и т.д.

Стандарты

За время своего существования c 1996 года Wi-Fi (точнее IEEE 802.11), как и любая технология, прошла несколько стадий своего развития. Соответственно появлялись и различные ее версии. Тестирование на совместимость и сертификацией беспроводных устройств, занимается отдельная организация WECA (Wireless Ethernet Compatibility Alliance) более известная как Wi-Fi Alliance .

Wi-Fi 802.11 – первая версия стандарта. Скорость передачи данных до 1 Мбит/с (после усовершенствования технологии – 2 Мбит/с), диапазон — 2.4 ГГц;

Wi-Fi 802.11a – скорость до 54 Мбит/с, диапазон — 5 ГГц;

Wi-Fi 802.11b – Пропускная способность от 5.5 до 11 Мбит/с, диапазон — 2.4 ГГц;

Wi-Fi 802.11g – скорость до 50 Мбит/с, диапазон — 2.4 ГГц, совместимость с 802.11b;

Wi-Fi 802.11n – поддерживаются и 2.4 и 5 ГГц диапазон, обратно совместим с 802.11a/b/g. Максимальная скорость до 600 Мбит/с, при использовании технологии MIMO (точнее SU-MIMO);

Wi-Fi 802.11ac – диапазон — 5 ГГц, пропускная способность от 433 Мбит/с до 6.77 Гбит/с. Технология MIMO эволюционировала до MU-MIMO;

Похожее:  Intel usb wifi card

Wi-Fi 802.11ad – эксплуатирует частоту в 60 ГГц, пропускная способность до 7 Гбит/с;

Wi-Fi 802.11ax – должен прийти на смену 802.11ac, сети — 2.4 и 5 ГГц, а также использовать дополнительные каналы в диапазоне от 1 до 7 ГГц. Обещано много улучшений: от увеличения пропускной способности, до уменьшения задержек и более лучшей работы в условиях плотной застройки.

Wi-Fi Alliance планирует переход на другой, более удобный для пользователей, формат названия поколений: вместо 802.11ax будет использоваться Wi-Fi 6, 802.11ac — Wi-Fi 5, 802.11n — Wi-Fi 4.

Скорость передачи данных

Как вы могли заметить, по мере внедрения новых версий стандарта увеличивалась максимальная пропускная способность Wi-Fi, причем как интенсивными (увеличение скорости на 1 антенну), так и экстенсивными (увеличением количества антенн) методами. Заявленные цифры приведены в таблице ниже.

802.11a до 54 Мбит/с
802.11b до 11 Мбит/с
802.11g до 54 Мбит/с
802.11n до 600 Мбит
802.11ac до 6,77 Гбит/с

Но даже если устройство, на котором, к примеру, гордо будет указана скорость до 300 Мбит/с, то вы получите максимум 50-60% от заявленной величины. При увеличении расстояния между приемником и передатчиком, появлении помех на пути следования сигнала, эта величина станет еще меньше.

Антенны

Конструктивное исполнение

Различают внутренние (расположенные в корпусе устройства) и внешние антенны. Внутренние не увеличивают габариты устройства, но в большинстве своем менее мощные (чем внешние) и ориентированы в пространстве только в одном положении. Внешние имеют шарнир с несколькими степенями свободы, что позволяет повернуть или отклонить антенну в нужное положение.

Внешние, в свою очередь, могут быть съемными и не съемными. Преимуществом съемных моделей является возможность их замены на аналогичные, с большим коэффициентом усиления или другой диаграммой направленности (включая уличные варианты), в случае повреждения или желания увеличить радиус действия сети.

Также внешние антенны различаются конструктивно: если раньше это был специальный проводник, то сейчас нередко используются печатные платы.

Источник

Анализируем Wi-Fi-сети с телефона Android: узнаем радиус действия (расстояние до роутера), свободные каналы, MAC-адрес, тип шифрования и пр. характеристики

При настройке и оптимизации работы Wi-Fi сети иногда требуется уточнить определенные данные (например, какие каналы были заняты вашими соседями, какие сейчас используются DNS и пр.).

Всё это можно быстро сделать прямо с телефона (что в ряде случаев удобнее, чем отвлекаться на ПК).

Собственно, в этой скромной статейке решил привести 3 небольших сподручных приложения, которые позволяют решить эту задачу. 👌

Примечание: кстати, эти приложения также позволяют «полюбопытствовать»: например, пройдясь по квартире с телефоном можно попытаться определить у каких соседей какие названия Wi-Fi сетей, какие они задали настройки и пр.

Как узнать чуть больше о сетях Wi-Fi, которые нас окружают

👉 Вариант 1

После установки и запуска приложения — оно автоматически на первом же экране покажет вам все Wi-Fi сети, которые можно «поймать» (исходя из вашего месторасположения).

Обратите внимание, что рядом с названием сети отображается количество метров до источника сигнала (Wi-Fi роутера). Погуляв по комнатам (перемещая телефон в руке) — можно будет понять, каким соседям — какие сети принадлежат. 👌

Wi-Fi analyzer — определяем радиус сети

Далее порекомендовал бы открыть раздел, посвященный каналам (значок со звездочками 👇). Приложение автоматически найдет наиболее свободные каналы и предложит их вам (весьма полезно при настройке роутера).

Примечание: если вы укажите такой же канал, как у ваших ближайших соседей — это может отразиться на скорости и стабильности работы вашей Wi-Fi сети.

Лучшие новые каналы для создания сети Wi-Fi

Во вкладке «Точки доступа» (самая правая в меню) представлены все сети: их имена, MAC-адреса, типы шифрования, каналы, уровни сигнала и пр. 👇

👉 Вариант 2

Еще одно добротное приложение, которое поможет узнать достаточно много как о текущей Wi-Fi сети (к которой вы подключены), так и о ее «соседях».

Например, во время первого запуска откроется вкладка «Information» в которой будут представлены: IP-адрес, маска сети, DNS-сервера, и пр. 👇

Информация о подключении (Net Analyzer)

Во вкладке «Wi-Fi Signal» будет представлена вся «подноготная» об окружающих вас Wi-Fi сетях: названия, модели устройств (Qtech, Tenda и пр.), типы шифрования, каналы, уровень сигнала, частоты сети и пр.

Источник

Реально ли подключить ноутбук или телефон к Wi-Fi на большом расстоянии?

Довольно распространенный вопрос наших клиентов примерно таков: «Можно ли использовать точки доступа Ubiquiti (MikroTik и подобные) для подключения к Wi-Fi мобильных устройств (смартфонов, планшетов, ноутбуков) на больших расстояниях? Ведь возможности большинства моделей предусматривают передачу сигнала на десятки километров«.

Wi-Fi для мобильных устройств на большое расстояние

Но это совсем не тот случай. Теоретически максимальное расстояние, на котором ваш ноут или смартфон могут подключиться к вай-фай — это около 300 метров, в реальности дистанция будет зависеть от возможностей вашего устройства и от окружающей среды.

Почему так? Все дело в том, что Wi-Fi — это двусторонняя связь. В соединении участвуют 2 стороны: точка доступа (AP), которая обращается к клиентской станции, и станция, которая обращается к точке доступа. И если мы сравниваем ноутбуки, планшеты и другие подобные девайсы — и точки доступа для дальних расстояний, то это оборудование совершенно разного уровня.

Точки доступа от Ubiquiti, MikroTik или аналогичные имеют высокую выходную мощность и хорошее усиление антенн, которые позволяют отправить сигнал довольно далеко в пределах диаграммы направленности AP. Ноутбуки, планшеты и мобильные телефоны в большинстве случаев укомплектованы всенаправленными антеннами с низким коэффициентом усиления (3-6 дби). Именно поэтому для подключения к Wi-Fi потребительских устройств была разработана линейка Ubiquiti UniFi, модели которой также имеют всенаправленные антенны и небольшой коэффициент усиления, для оптимального взаимодействия.

Рассмотрим пример

Wi-Fi к ноутбуку на большое расстояние

Ваш ноутбук может принимать и передавать сигнал в пределах 50 метров. На этом расстоянии вы без проблем подключитесь как к устройству UniFi, так и к более мощной точке с поддержкой технологии airMax или подобной.

Но вот вы отошли с ноутом чуть дальше — до 60 метров. Что теперь? Ваше устройство по-прежнему видит точку доступа и даже, возможно, может подключиться к ней, но скорость соединения вас не обрадует.

Идем дальше, 90 метров. В зависимости от окружающих условий, UniFi AP на таком расстоянии вы можете вообще не увидеть, не говоря о том, чтобы подключиться. «Дальнобойную» точку доступа ваш планшет или ноутбук обнаружит, и даже будет определять хороший уровень сигнала, но вряд ли сможет подключиться — его собственные ограниченные возможности не позволят отправить встречный сигнал нужной мощности. AP его просто «не услышит».

Источник