Гонка форматов 16/44, 24/192, . в поисках верного звучания. Винил, пленки, кассеты, компакт-диски и т.д.

Конечно, об этом всем можно спорить. Но мне понравился не только теоретический, но и практический инженерный подход к делу, наглядность и доступность изложения его мыслей. Не буду все пересказывать, читайте и смотрите сами, отмечу лишь некоторые мысли.

Вот что Крис Монтгомери пишет о динамическом диапазоне 16-битого звука :
16-битный линейный PCM, имеет динамический диапазон 96 дБ.который рассчитывается как (6*бит) дБ. Многие считают, что 16-бит аудио не может представлять произвольные звуки тише чем -96 дБ. Это неверно. на практике эффективный динамический диапазон 16-битного звука достигает 120 дБ.
16-бит вполне достаточно, чтобы хранить все, что мы можем услышать, и будет хватать всегда.

А вот что он говорит о частотах дискретизации:

С другой стороны, если частота дискретизации 96 кГц или 192 кГц, низкочастотный фильтр имеет дополнительно октаву или две в диапазоне модуляции. Такой фильтр намного легче построить. Частоты дискретизации ниже 48 кГц являются на самом деле одним из неприятных компромиссов на аналоговом этапе.

В этом видео еще много всего познавательного, в том числе и о цифровом представлении видео данных. Но больше мне понравилось второе видео, где Крис, используя реальную аппаратуру, объясняет, например, вот что:
цифровой сигнал не является ступенчатым, и вы ни в коем случае не получите ступенек после преобразования цифрового сигнала в аналоговый.

А вот и ответ на мой вопрос, правда не про винил, а про магнитную пленку:
компакт-кассеты. если конечно вы их ещё застали и помните, они могли достигать разрядности в девять бит, при идеальных условиях, однако наиболее распространённым было значение в пять-шесть бит, особенно, если кассета была записана на бытовой деке.
Именно так. Ваши микстейпы обладали разрядностью около шести бит, если вам повезло!
Лучшие профессиональные бобинные плёнки, которые использовались в студиях, едва достигали, угадайте, сколько? 13 бит (!), при условии дополнительного шумопонижения.
Поэтому надпись «DDD» на компакт-диске говорит о его high-end уровне.

Получается, что хватало нам 5-6 бит на кассетниках и в лучшем случае 8-10 бит на бобинниках! И все рады были. Помню, первый раз видел 38-ю «скорость», крутой студийник Revox C270, уровень шума на скорости 38 см/сек -65дБ (!), 11 бит.

↑ Что же делать?

1) Искать качественные оригинальные CD или их качественные «рипы», например, в формате FLAC.

2) Слушать музыку через качественные цифро-аналоговые преобразователи (ЦАП/DAC). Например, наш USB audio DAC «Goldsmith», не говоря уже про гораздо более дорогие аппараты. Даже самоделка на PCM2705 даст реальную и вполне ощутимую разницу по сравнению с интегрированной в ноутбук звуковой картой.
Посредственным качеством звука «страдают» многие ноутбуки и мобильные телефоны, да и встроенные в материнскую плату звуковые решения далеко не идеальны.

3) Использовать хорошие наушники или качественную активную акустику.

4) Применять специальные усилители для наушников — далеко не все звуковые карты хорошо работают на низкоомную нагрузку.

Возможно, все это в комплексе позволит по-новому услышать вашу любимую музыку!

Ну, и напоследок, видео для поднятия настроения. И не важно, сколько там бит и килогерц: Tom Jones & Jerry Lee Lewis, Rockin’ Medley. 1969 год

Спасибо за внимание!

↑ Ссылки

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

Источник

Цифровой аудиоформат 24/192, и почему в нем нет смысла. Часть 2 [Перевод]

Прим. перев.: Это перевод второй (из четырех) частей развернутой статьи Кристофера «Монти» Монтгомери (создателя Ogg Free Software и Vorbis) о том, что, по его мнению, является одним из наиболее распространенных и глубоко укоренившихся заблуждений в мире меломанов.

Частота 192 кГц считается вредной

Музыкальные цифровые файлы с частотой 192 кГц не приносят никакой выгоды, но всё же оказывают кое-какое влияние. На практике оказывается, что их качество воспроизведения немного хуже, а во время воспроизведения возникают ультразвуковые волны.

И аудиопреобразователи, и усилители мощности подвержены влиянию искажений, а искажения, как правило, быстро нарастают на высоких и низких частотах. Если один и тот же динамик воспроизводит ультразвук наряду с частотами из слышимого диапазона, то любая нелинейная характеристика будет сдвигать часть ультразвукового диапазона в слышимый спектр в виде неупорядоченных неконтролируемых нелинейных искажений, охватывающих весь слышимый звуковой диапазон. Нелинейность в усилителе мощности приведет к такому же эффекту. Эти эффекты трудно заметить, но тесты подтвердили, что оба вида искажений можно расслышать.

График выше показывает искажения, полученные в результате интермодуляции звука частотой 30 кГц и 33 кГц в теоретическом усилителе с неизменным коэффициентом нелинейных искажений (КНИ) около 0.09%. Искажения видны на протяжении всего спектра, даже на меньших частотах.

Неслышимые ультразвуковые волны способствуют интермодуляционным искажениям в слышимом диапазоне (светло-синяя зона). Системы, не предназначенные для воспроизведения ультразвука, обычно имеют более высокие уровни искажений, около 20 кГц, дополнительно внося вклад в интермодуляцию. Расширение диапазона частот для включения в него ультразвука требует компромиссов, которые уменьшат шум и активность искажений в пределах слышимого спектра, но в любом случае ненужное воспроизведение ультразвуковой составляющей ухудшит качество воспроизведения.

  1. Динамик, предназначенный только для воспроизведения ультразвука, усилитель и разделитель спектра сигнала, чтобы разделить и независимо воспроизводить ультразвук, который вы не можете слышать, чтобы он не влиял на другие звуки.
  2. Усилители и преобразователи, спроектированные для воспроизведения более широкого спектра частот так, чтобы ультразвук не вызывал слышимых нелинейных искажений. Из-за дополнительных затрат и сложности исполнения, дополнительный частотный диапазон будет уменьшать качество воспроизведения в слышимой части спектра.
  3. Качественно спроектированные динамики и усилители, которые совсем не воспроизводят ультразвук.
  4. Для начала можно не кодировать такой широкий диапазон частот. Вы не можете (и не должны) слышать ультразвуковые нелинейные искажения в слышимой полосе частот, если в ней нет ультразвуковой составляющей.

Все эти способы нацелены на решение одной проблемы, но только 4 способ имеет какой-то смысл.

Если вам интересны возможности вашей собственной системы, то нижеследующие сэмплы содержат: звук частотой 30 кГц и 33 кГц в формате 24/96 WAV, более длинную версию в формате FLAC, несколько мелодий и нарезку обычных песен с частотой, приведенной к 24 кГц так, что они полностью попадают в ультразвуковой диапазон от 24 кГц до 46 кГц.

  • Звук 30 кГц + звук 33 кГц (24 бит / 96 кГц) [5-секундный WAV] [30-секундный FLAC]
  • Мелодии 26 кГц – 48 кГц (24 бит / 96 кГц) [10-секундный WAV]
  • Мелодии 26 кГц – 96 кГц (24 бит / 192 кГц) [10-секундный WAV]
  • Нарезка из песен, приведенных к 24 кГц (24 бит / 96 кГц WAV) [10-секундный WAV] (оригинальная версия нарезки) (16 бит / 44.1 кГц WAV)

Предположим, что ваша система способна воспроизводить все форматы с частотами дискретизации 96 кГц [6]. При воспроизведении вышеуказанных файлов, вы не должны слышать ничего, ни шума, ни свиста, ни щелчков или каких других звуков. Если вы слышите что-то, то ваша система имеет нелинейную характеристику и вызывает слышимые нелинейные искажения ультразвука. Будьте осторожны при увеличении громкости, если вы попадете в зону цифрового или аналогового ограничения уровня сигнала, даже мягкого, то это может вызвать громкий интермодуляционный шум.

В целом, не факт, что нелинейные искажения от ультразвука будут слышимы на конкретной системе. Вносимые искажения могут быть как незначительны, так и довольно заметны. В любом случае, ультразвуковая составляющая никогда не является достоинством, и во множестве аудиосистем приведет к сильному снижению качества воспроизведения звука. В системах, которым она не вредит, возможность обработки ультразвука можно сохранить, а можно вместо этого пустить ресурс на улучшение качества звучания слышимого диапазона.

Недопонимание процесса дискретизации

Теория дискретизации часто непонятна без контекста обработки сигналов. И неудивительно, что большинство людей, даже гениальные доктора наук в других областях, обычно не понимают её. Также неудивительно, что множество людей даже не осознают, что понимают её неправильно.

Дискретизированные сигналы часто изображают в виде неровной лесенки, как на рисунке выше (красным цветом), которая выглядит как грубое приближение к оригинальному сигналу. Однако такое представление является математически точным, и когда происходит преобразование в аналоговый сигнал, его график становится гладким (голубая линия на рисунке).

Похожее:  Сломался корпус наушников что делать

Наиболее распространенное заблуждение заключается в том, что, якобы, дискретизация – процесс грубый и приводит к потерям информации. Дискретный сигнал часто изображается как зубчатая, угловатая ступенчатая копия оригинальной идеально гладкой волны. Если вы так считаете, то можете считать, что чем больше частота дискретизации (и чем больше бит на отсчет), тем меньше будут ступеньки и тем точнее будет приближение. Цифровой сигнал будет все больше напоминать по форме аналоговый, пока не примет его форму при частоте дискретизации, стремящейся к бесконечности.

По аналогии, множество людей, не имеющих отношения к цифровой обработке сигналов, взглянув на изображение ниже, скажут: «Фу!» Может показаться, что дискретный сигнал плохо представляет высокие частоты аналоговой волны, или, другими словами, при увеличении частоты звука, качество дискретизации падает, и частотная характеристика ухудшается или становится чувствительной к фазе входного сигнала.

Это только так выглядит. Эти убеждения неверны!

Комментарий от 04.04.2013: В качестве ответа на всю почту, касательно цифровых сигналов и ступенек, которую я получил, покажу реальное поведение цифрового сигнала на реальном оборудовании в нашем видео Digital Show & Tell, поэтому можете не верить мне на слово.

Все сигналы частотой ниже частоты Найквиста (половина частоты дискретизации) в ходе дискретизации будут захвачены идеально и полностью, и бесконечно высокая частота дискретизации для этого не нужна. Дискретизация не влияет на частотную характеристику или фазу. Аналоговый сигнал может быть восстановлен без потерь – таким же гладким и синхронным как оригинальный.

С математикой не поспоришь, но в чем же сложности? Наиболее известной является требование ограничения полосы. Сигналы с частотами выше частоты Найквиста должны быть отфильтрованы перед дискретизацией, чтобы избежать искажения из-за наложения спектров. В роли этого фильтра выступает печально известный сглаживающий фильтр. Подавление помехи дискретизации, на практике, не может пройти идеально, но современные технологии позволяют подойти к идеальному результату очень близко. А мы подошли к избыточной дискретизации.

Избыточная дискретизация

Частоты дискретизации свыше 48 кГц не имеют отношения к высокой точности воспроизведения аудио, но они необходимы для некоторых современных технологий. Избыточная дискретизация (передискретизация) – наиболее значимая из них [7].

Идея передискретизации проста и изящна. Вы можете помнить из моего видео «Цифровое мультимедиа. Пособие для начинающих гиков», что высокие частоты дискретизации обеспечивают гораздо больший разрыв между высшей частотой, которая нас волнует (20 кГц) и частотой Найквиста (половина частоты дискретизации). Это позволяет пользоваться более простыми и более надежными фильтрами сглаживания и увеличить точность воспроизведения. Это дополнительное пространство между 20 кГц и частотой Найквиста, по существу, просто амортизатор для аналогового фильтра.

На рисунке выше представлены диаграммы из видео «Цифровое мультимедиа. Пособие для начинающих гиков», иллюстрирующие ширину переходной полосы для ЦАП или АЦП при частоте 48 кГц (слева) и 96 кГц (справа).

Это только половина дела, потому что цифровые фильтры имеют меньше практических ограничений в отличие от аналоговых, и мы можем завершить сглаживание с большей точностью и эффективностью. Высокочастотный необработанный сигнал проходит сквозь цифровой сглаживающий фильтр, который не испытывает проблем с размещением переходной полосы фильтра в ограниченном пространстве. После того, как сглаживание завершено, дополнительные дискретные отрезки в амортизирующем пространстве просто откидываются. Воспроизведение передискретизированного сигнала проходит в обратном порядке.

Это означает, что сигналы с низкой частотой дискретизации (44.1 кГц или 48 кГц) могут обладать такой же точностью воспроизведения, гладкостью АЧХ и низким уровнем наложений, как сигналы с частотой дискретизации 192 кГц или выше, но при этом не будет проявляться ни один из их недостатков (ультразвуковые волны, вызывающие интермодуляционные искажения, увеличенный размер файлов). Почти все современные ЦАП и АЦП производят избыточную дискретизацию на очень высоких скоростях, и мало кто об этом знает, потому что это происходит автоматически внутри устройства.

ЦАП и АЦП не всегда умели передискретизировать. Тридцать лет назад некоторые звукозаписывающие консоли использовали для звукозаписи высокие частоты дискретизации, используя только аналоговые фильтры. Этот высокочастотный сигнал потом использовался для создания мастер-дисков. Цифровое сглаживание и децимация (повторная дискретизация с более низкой частотой для CD и DAT) происходили на последнем этапе создания записи. Это могло стать одной из ранних причин, почему частоты дискретизации 96 кГц и 192 кГц стали ассоциироваться с производством профессиональных звукозаписей.

16 бит против 24 бит

Хорошо, теперь мы знаем, что сохранять музыку в формате 192 кГц не имеет смысла. Тема закрыта. Но что насчет 16-битного и 24-битного аудио? Что же лучше?

16-битное аудио с импульсно-кодовой модуляцией действительно не полностью покрывает теоретический динамический звуковой диапазон, который способен слышать человек в идеальных условиях. Также есть (и будут всегда) причины использовать больше 16 бит для записи аудио.

Ни одна из этих причин не имеет отношения к воспроизведению звука – в этой ситуации 24-битное аудио настолько же бесполезно, как и дискретизация на 192 кГц. Хорошей новостью является тот факт, что использование 24-битного квантования не вредит качеству звучания, а просто не делает его хуже и занимает лишнее место.

Примечания к Части 2

6. Многие из систем, которые неспособны воспроизводить сэмплы 96 кГц, не будут отказываться их воспроизводить, а будут незаметно субдискретизировать их до частоты 48 кГц. В этом случае звук не будет воспроизводиться совсем, и на записи ничего не будет, вне зависимости от степени нелинейности системы.

7. Передискретизация – не единственный способ работы с высокими частотами дискретизации в обработке сигналов. Есть несколько теоретических способов получить ограниченный по полосе звук с высокой частотой дискретизации и избежать децимации, даже если позже он будет субдискретизирован для записи на диски. Пока неясно, используются ли такие способы на практике, поскольку разработки большинства профессиональных установок держатся в секрете.

8. Неважно, исторически так сложилось или нет, но многие специалисты сегодня используют высокие разрешения, потому что ошибочно полагают, что звук с сохраненным содержимым за пределами 20 кГц звучит лучше. Прямо как потребители.

Источник

Почему бессмысленно хранить аудио в 24/192

Почему бессмысленно хранить аудио в 24/192Почему бессмысленно хранить аудио в 24/192

Вводные слова

Кое-что о человеческой психологии

В прошлом году Нил Янг* и Стив Джобс обсуждали создание сервиса для скачивания аудио в «бескомпромиссном студийном качестве», а спустя некоторое время Нил Янг представил плеер Pono, который должен будет использоваться для воспроизведения этого аудио. В общем, эта идея нравится инвесторам, и они совсем недавно выделили $500,000 на популяризацию этого формата. По-сути, на что выделены эти деньги? На одурачивающий маркетинг. Почему этот маркетинг работает? Ну, он работает из-за существования парочки факторов.

Во-первых, при восприятии таких новостей люди зачастую основываются на догадках о том, как работает цифровое аудио, а не на том, как на самом деле оно работает: они предполагают, что увеличение частоты дискретизации аналогично увеличению количества кадров в секунду в видео. На самом деле такое увеличение аналогично добавлению инфракрасных и ультрафиолетовых цветов, которые мы никогда не увидим и видеть не можем в принципе. (Об этом повествует центральная часть статьи, но она будет чуть-чуть дальше.)

Во-вторых, люди могут считать, что слышат разницу в звуке, когда её на самом деле нет. Допускать такие ошибки мышления — это нормально для человека. Ошибки эти называются когнитивными искажениями. Подтверждение предубеждения, стадный инстинкт, эффект плацебо, доверие авторитету — это лишь некоторые когнитивные искажения, могущие заставить человека поверить в то, что он слышит разницу. Подтверждение предубеждения: «В 24/192 больше информации, значит я её должен слышать; о, слышу!» Стадный инстинкт вообще каким-то магическим образом заставляет людей верить в то, чего нет и быть не может. Доверие авторитету либо заставляет совершенно не критично относиться к информации, либо при сравнении со своим честным мнением отдавать предпочтение чужому мнению. В советском научно-популярном фильме «Я и другие» наглядно показываются некоторые социальные когнитивные искажения. Например, в фильме показывается следующий эксперимент: группе студентов показывают несколько портретов людей, и они должны сказать, на каких из двух портретов изображён один и тот же человек. Все студенты, кроме одного, — подставные и указывают на два портрета совершенно непохожих людей, а испытуемый, хоть изначально и не думал о таком варианте, зачастую соглашается с мнением большинства. Вы скажете: «Нет, ну я-то не такой». Вообще, вряд ли. Все мы люди, просто отличаемся тем, что в разной степени в чём-либо осведомлены. В любом случае, если бы люди не были подвластны таким когнитивным искажениям, то уже давно не работал бы маркетинг. Посмотрите кругом: люди покупают необоснованно дорогие товары и радуются этому.

Похожее:  Беспроводные наушники borofone pro 4 отзывы

Итак, 24/192 обычно не улучшает качество и это звучит как плохая новость. Хорошая новость заключается в том, что качество звучания улучшить несложно — достаточно просто купить хорошие наушники**. В конце концов улучшение качества звучания от них заметно сразу, оно не иллюзорно и радует. По крайней мере взяв наушники хотя бы в ценовом диапазоне от $100 до $200, вы будете радоваться и скажете мне спасибо за мой совет купить хорошие наушники, если, конечно, вы не купите красивые и дорогие имиджевые наушники, предназначенные совсем не для качественного воспроизведения аудио. А теперь давайте перейдём к самому интересному.

* Да, я тоже понятия не имел, кто такой Нил Янг. Оказывается, это известный канадский музыкант. уже 50 лет как известный.
** Это моё личное мнение, я не являюсь представителем каких-либо магазинов и не преследую никакой коммерческой цели.

Теорема Найквиста-Шеннона

Для того, чтобы не оказаться в ловушке мышления, попробуем с самых азов понять, из-за чего работает цифровое аудио.

Сначала чётко уясним термины (будем формулировать их так, будто они применяются только при анализе звуков).
Сигнал — функция, зависящая от времени. Например, как сигнал можно выразить электрическое напряжение в проводах аудиоаппаратуры или, скажем, давление звука на барабанную перепонку (в зависимости от момента времени).

Спектр — представление сигнала в зависимости от частоты, а не времени. Это означает, что функция выражается не как «громкость», записанная во времени, а как набор громкостей бесконечного количества гармоник (косинусоид), включенных в один и тот же момент времени. То есть изначальный сигнал может быть представлен как набор гармонических сигналов разных частот и амплитуд («громкостей»). Да, физические величины зачастую (на деле почти всегда) можно представлять таким «странным» образом (проведя преобразование Фурье над изначальной функцией). (Отображение значения спектра в произвольный момент времени — это один из самых наглядных способов изобразить визуально музыку в аудиоплеере. Замечу, что тот спектр, о котором я говорю, содержит информацию о всем промежутке времени, а не о каком-то мгновенном значении, т.к. по набору гармоник (спектру) можно воссоздать весь звуковой отрывок.)

Теорема Найквиста-Шеннона утверждает, что если сигнал имеет ограниченный спектр, то он может быть восстановлен по своим отсчётам, взятым с частотой, строго большей удвоенной верхней частоты fc: f > 2 fc. Если мы будем увеличивать частоту отсчётов, то это повлияет лишь на то, что формат цифрового аудио начнёт позволять записывать более высокие частоты — те, которые мы никак не воспринимаем. Кстати, в этой теореме говорится о сигнале, состоящем не из конечного набора частот, а из бесконечного, как в реальном звуке. Если говорить простым языком, то смысл теоремы заключается в том, что если мы возьмём какой-нибудь звуковой сигнал, содержащий только частоты, меньшие fc, и запишем (в файл) его значения через каждые 1/f секунды, то мы сможем потом воссоздать изначальный звуковой сигнал по этим значениям. Да-да, воссоздать полностью, без потери какого-либо качества вообще. Но формулировка не объясняет, как воссоздать этот звук. Вообще, это теорема из работы Найквиста «Certain topics in telegraph transmission theory» за 1928 год, в этой работе ничего не сказано про то, как воссоздать звук. А вот теорема Котельникова, предложенная и доказанная В.А. Котельниковым в 1933 году, объясняет это довольно чётко.

Теорема Котельникова

Теорема Котельникова | Мексиканская шляпа | График ( sinc(t) = sin(t)/t )

Вычитание k/(2f1) из t означает сдвиг шляпы в нужное место (в то самое место, где был записан отсчёт), а умножение на Dk означает растягивание этой шляпы по вертикали так, чтобы её макушка совпадала с точкой отсчёта. То есть теорема утверждает, что для воссоздания звука достаточно собрать шляпы в точках, соответствующих отсчётам, причём таким образом, чтобы вершины шляп совпадали с измерениями в отсчётах. Теорему оставим без доказательства — его можно найти в почти любой литературе по обработке сигналов. Однако обращу внимание на то, что воссоздание функции по теореме Котельникова не является просто сглаживанием. Да, шляпа не влияет на значения в соседних отсчётах, но влияет на значения между ними. И когда мы имеет низкочастотный сигнал, это может выглядеть как сглаживание, но если мы имеем, скажем высокочастотный косинус, то при его изображении в виде ступенек, мы даже не поймём, что это косинус — он будет казаться просто хаотичным набором отсчётов, однако, при восстановлении получится самый настоящий и идеально гладенький косинус.

Теорема Котельникова | График

Ну что же, математически понятно, что восстановить звук возможно. Чисто теоретически. И это не значит, что устройства воспроизведения цифрового звука воссоздают звук неотличимым от оригинального, это лишь значит, что аудиоформат позволяет такое сделать. А вот как правильно подкидывать мексиканские шляпы на выход цифро-аналогового преобразователя и как донести полученный звук до уха с минимальными искажениями — это уже совсем другая магия, не имеющая отношения к данной статье. К счастью для нас, добрые инженеры уже тысячу раз подумали над тем, как им решить для нас эту задачу.

Что дают 24 бита

При обсуждении применения теоремы Котельникова к цифровому аудио мы для простоты забыли, что при квантовании (оцифровке) числа Dk — это числа, записанные на компьютере, а, значит, это числа не любой точности, а какой-то определённой — той, что мы выберем для нашего аудиоформата. Это означает, что значения изначального сигнала записываются не точно, и это приводит к, вообще говоря, невозможности воссоздать оригинальный сигнал. Но как в реальности это влияет на воспринимаемый человеком звук при честном сравнении 16 и 24 битных сигналов? Проводились исследования, что лучше, 24/44 или 16/88 (да-да, именно так!), удвоение частоты качества не прибавило, а вот увеличение разрядности испытуемые определяли без проблем. В сторону 32 и 64 бит пока никто не смотрит, нет в природе устройств, которые бы могли реализовать потенциал 64-битного звука. А вот при внутренней обработке звука в музыкальных редакторах используют высокую разрядность под 64 бит и выше.

  • 20-30 дБ SPL – очень тихая комната (да-да, комната, в которой ничего не происходит).
  • 40-50 дБ SPL – обычный разговор.
  • 75 дБ SPL – крик, смех на расстоянии 1 метр.
  • 85 дБ SPL – опасная для слуха громкость — повреждение при длительном воздействии 8 часов в день, для некоторых людей эта величина может быть меньше [Hearing damage]. Примерно такая громкость на автостраде в час пик [Sound pressure levels]. Не знаю как вы, но я на такой громкости никогда не слушаю музыку — это становится понятно, когда иду в закрытых накладных/охватывающих наушниках мимо шоссе и пытаюсь слушать музыку.
  • 91 дБ SPL – повреждение слуха при воздействии 2 часа в день.
  • 100 дБ SPL – это максимальное допустимое звуковое давление для наушников по нормам Евросоюза.
  • 120 дБ SPL – почти невыносимо — болевой порог.
  • 140 дБ SPL и выше — разрыв барабанной перепонки, баротравма или даже смерть.

В наушниках без особых проблем многие слушают под 130-140 дБ и никакого разрыва перепонки не случается. Слух попортить безусловно можно. Основные данные по болевым порогам получены от колонок, где наибольший вред наносят низкие частоты, которые действуют не столько на ухо, сколько на все тело, вводя в резонанс внутренние органы и разрушая их. Повредить грудную клетку от низких частот из наушников просто не реально. А вот в автомобиле от сабвуфера – в самый раз. Но более важно то, что таблица создавалась изначально под производственный шум на заводах. Ухо от наушников повредить можно на высокой громкости только в области верхних средних частот, где у уха есть собственный резонанс.

Эффективный же динамический диапазон 16-битного аудио — 96 дБ. Сравнивая 130 и 96 дБ становится понятно, что разницу в звуке мы услышать можем. Но чисто теоретически. Во-первых, 96 дБ — это величина отношения сигнал/шум в типичных источниках звука. Во-вторых, для популяризации форматов высокого разрешения на студиях часто сводят звук для CD и DVD-Audio с несколько разным усердием и в итоге покупатель может слышать посредственно сведённый материал в первом случае и хорошо сведенный во втором.

Похожее:  Беспроводные наушники теряется звук

Последнее время стало модным выпускать ремастеры различных альбомов исполнителей. Но при этом большая часть таких ремастеров, сделанных на более новом оборудовании и в тяжеловесных форматах звучит существенно хуже, чем старые записи. Здесь возникает подозрение, что вместо качественного сведения талантливым звукорежиссером, все заменяется просто качественным оборудованием и уверенности, что это даст лучший результат, а если нет, то и так все раскупят.

Получается, что с позиции технических параметров 24 бит всегда будут лучше, чем 16, но услышать это можно на качественно сделанных записях, если сделать запись с радио, то там различить 16 и 24 бита будет очень сложно. Таким образом стоит гнаться не за высокими форматами, а за качественно записанными и сведенными записями и стремится к повышению качества аппаратуры.

Гонка к тяжеловесным форматам сопоставима с гонкой за мегапикселями фотоаппаратов, где любой профессионал знает, что итоговое качество от этого зависит довольно слабо.

В дорогих системах порой используют отдельную обработку в виде SRC как в Colorfly C4 Pro, что при переводе 44.1/16>192/24 позволяет перевести ЦАП в другой режим работы и заменить его блок цифровой фильтрации сигнала (от альязинга) более совершенным внешним SRC конвертером. Так же отдельно сконвертированные файлы из 44.1/16 в 192/24 порой могут звучать лучше, но именно из-за особенностей используемого ЦАП и это дает повод задуматься над апгрейдом системы в целом.

Надо отметить, что проверка различных DVD-Audio дисков порой выдавала удручающий результат, т.к. изначальный исходник для тяжеловесного формата был взят из стандартного CD-Audio.

Дополнительно

Ну что же, если наша цель заключается в том, чтобы наслаждаться звучанием, то осталось понять, что новость про бессмысленность 24/192 даже и не плохая вовсе — она, на самом деле говорит о том, что качество звука улучшить можно, но для этого не надо гнаться за тяжеловесными форматами.

Но раз существует как минимум два мнения по поводу «16/44.1 против 24/192», то, может быть есть и ещё какие-то иные и интересные мнения? Да, есть. Как минимум есть ещё две интересные статьи с неожиданными выводами: «Coding High Quality Digital Audio» от J. Robert Stuart (статья на английском) и «24/192 Music Downloads. and why they make no sense» от Monty, разработчика формата OGG (эта статья тоже на английском, она утверждает, что 24 бита тоже бессмысленны).

Источник

Есть ли в действительности разница между 16 и 24-битным звуком, или же это больше замануха для аудиофилов?

24-битный формат записи позволяет получить более широкий динамический диапазон и лучшее соотношение сигнал/шум при условии использования малошумящих аналоговых трактов до АЦП и после ЦАП.

Кроме этого, 24-битный формат, в теории, обеспечивает более низкий уровень искажений за счет более детальной оцифровки исходного сигнала, но отчетливо услышать этот эффект можно только при использовании специальных тестовых сигналов и соответствующих фильтров, а не при прослушивании обычной музыки.

В тракте воспроизведения обычно самым нелинейным элементом является динамик (вдобавок, в своем специфическом акустическом окружении) и нелинейность этой акустической конструкции всегда будет существенно выше, чем разница точности квантования между 24 и 16 битами. Тем не менее, если вы используете для прослушивания оригинальные фирменные треки в высоком разрешении, например 24bit 96kHz, то просто попробуйте понизить разрядность, используя дитеринг, и проведите слепое тестирование, возможно, на хорошей системе вы услышите несколько более «шершавый» и «технический» звук в 16 битах за счет повышения шумов квантования и дополнительного шума дитера, но это будет лишь очень тонкий едва заметный оттенок, гораздо менее заметный, чем разница между wav 16bit 44kHz и mp3 320kbps.

В студийной работе используется запись в формат 32-бит с плавающей точкой, который обеспечивает еще больший динамический диапазон. Это необходимо, поскольку записанные партии могут подвергаться интенсивной обработке, при которой отношение сигнал/шум может существенно ухудшаться (например, при применении программных эмуляторов перегруженных гитарных усилителей).

Источник



ProSound .iXBT.com

ESI UGM192 — самый миниатюрный профессиональный звуковой интерфейс

Немецкая компания ESI всегда ассоциировалась с оригинальными недорогими продуктами. Новый звуковой интерфейс UGM192 удивляет своими крошечными размерами, всего 87 x 67 мм, при этом являясь полноценным профессиональным интерфейсом.

Он имеет микрофонный вход с поддержкой +48В, гитарный вход, выход на наушники. Поддерживает 24 бит 192 кГц с конвертерами 114 дБ, и имеет собственные продвинутые драйвера под Windows и панель под Mac. Есть аппаратный мониторинг сигнала. Более того, отдельный вход для источника питания и совместимость с UAC2.0 делает его прекрасным выбором для мобильной звукозаписи. Именно для мобильного применения очень пригодится малюсенькие размеры и габариты. Официальный видеоролик рассказывает о том, как можно записывать дорожки прямо на iPhone.

Хотя данный интерфейс заявлен как USB3.1, это относится только к типу разъёма подключения, USB-C. Протокол работы у устройства всегда USB2.0. Мы попробовали подключить UGM192 к Intel USB3.1 контроллеру сертифицированным кабелем от USB3.1 Gen2 жесткого диска (10 Гбит/c). Устройство ESI возвращает дескриптор USB2.0 и работает на скорости 480 Мбит/c. То есть аппаратно внутри это на 100% USB2.0. Надо сказать, что USB-C более крепкий и долговечный, чем micro USB, поэтому его применение в мобильном интерфейсе более чем оправдано. Кстати, производитель даёт в комплекте целых два кабеля для подключения, с разъёмами USB-C на концах и со стандартным USB2.0 разъёмом.

Корпус интерфейса — полностью металлический, все его части выполнены из крашенного алюминия. В целях уменьшения габаритов микрофонный вход вместо XLR выполнен на разъёме TRS. Понадобится переходник или готовый кабель с TRS и XLR на конце для подключения микрофона. Есть ли в разъёме питание +48В? Мы специально подключили вольтметр, который показал, что всё в порядке, фантомное питание нисколько не пониженное. Главное отличие от привычных интерфейсов — отсутствие ручки GAIN. Вместо неё имеется переключатель на 3 положения: по умолчанию, +20 дБ, +30 дБ.

Максимальный уровень микрофонного и гитарного входа сигнала составляет приблизительно 0.3Vrms. Импеданс гитарного входа 500 кОм. Немаловажно подчеркнуть, что текущие режимы отображаются яркими светодиодными индикаторами, которые располагаются над миниатюрными кнопками.

Выход на наушники довольно громкий, максимальный уровень +6.4dBu при искажениях 0.0024%. В пересчёте на мВт получаем 80 мВт на 32 Ом. Для большинства массовых моделей наушников громкости хватит.

Отдельное питание здесь не увеличивает мощность усилителя. Дополнительный для того, чтобы при подключении к iPhone или iPad, внутренний аккумулятор этих мобильных устройств не разряжался.

Начинка ESI UGM192 как и всегда довольно самобытная, отличается от многих аналогичных устройств.

Внутри на плате с двух сторон довольно плотный монтаж элементов. Цифровая часть основывается на микроконтроллере Bravo SA9127. Он поддерживает частоты до 192 кГц и славится очень низким энергопотреблением.

Стерео кодек CS4272 очень популярен в недорогих профессиональных интерфейсах, так как имеет неплохие паспортные характеристики (динамический диапазона 114 дБ, Кг+шум -100 дБ) и обладает очень приличным звуком. Прочие элементы схемы собраны на операционных усилителях JRC4580.

Панель традиционно для ESI имеет лаконичный профессиональный вид, пикметры, индикацию текущей частоты работы. Минимальный размер ASIO буфера всего 32 семпла. Имеется также настройка USB буфера для улучшения стабильности работы при медленных ЦПУ компьютера.

Фирменная технология DirectWIRE позволяет гибко перенаправлять и микшировать сигналы между виртуальными каналами устройства. Это может пригодиться для объединения звуков ASIO и MME/WDM приложений или для интернет-вещания.

Величина задержки при буфере 64 семпла составляет 10 мс. Это типичное значение для USB2.0 интерфейсов.

Диагностика ASIO

Отметим большое количество виртуальных каналов, которые можно использовать по своему усмотрению.

Измерения в RMAA PRO

Так как линейных выходов у устройства нет, в этом обзоре мы даём измерения ТОЛЬКО НАУШНИКОВОГО ВЫХОДА. Мы подключили ESI на линейный вход Lisk Audio MOD3, имеющий собственный сигнал/шум свыше 122 дБА. Обе карты запитывались от качественного питания.

Источник