Износ центрального процессора.

Вот я хочу разрулить в этой теме интересующий меня вопрос. А именно — это износ центрального процессора.
Хотелось бы узнать, какова продолжительность службы процессора при самых низких нагрузках, к примеру набор текста?
А также интересно, в каком случае процессор прослужит дольше?
1 случай
Процессор используется для постоянного конвертирования, архивирования файлов. Постоянная загрузка процессора составляет не менее 50%, но не более 90%.
2 случай
Процессор занят обсчётом компьютерных игр, которые запускают каждый день из расчёта 8 часов в сутки.
_________________________________________
Сколько лет прослужит процессор в первом случае, а сколько во втором? К примеру процессор Intel Pentium 4 с частой 2,5 Ггц.

И вообще, были ли случаи у форумчан, когда процессор выходил из строя от времени. Именно от времени, а не от перегрева и прочих факторов.

Сообщение отредактировал Cyrax: 26 Август 2006 — 08:41

#2 Sottona2

  • Город: Северный Донбасс, Украина

#3 Cyrax

  • Пол: Мужчина
  • Город: Троицк, Челябинская область

#4 Lupus

Интересно!
Большинство людей апгрейдят компы и старые камни продают, у других процы горят из-за разгона (high temperature). И ни разу я не слышал, чтобы у кого-нибудь камень накрылся от времени.
Выходит, что от времени камень не может загнуться.

#5 Ивор

  • Пол: Мужчина
  • Город: N.
  • Интересы: Люблю сыр.

#6 Loco.

А если проц разогнать, да еще напряжения на ядро увеличить, скажем, до отметки в 1.55V (A64_3200+), причем температорный режим не нарушен?

#7 zaragon

#8 etrange

95% случаев — банальный перегрев (остановка кулера)

#9 Cyrax

  • Пол: Мужчина
  • Город: Троицк, Челябинская область

rayoflight, ты имеешь в виду, как предотвратить остановку кулера? Очень просто. 1 способ это возможность воспользоваться функцией в биосе, которая оповещает во время остановки (поломки) кулера. Устанавливаешь эту опцию в положение Enabled и при остановке (поломке) кулера динамик в системнике запищит.
2 способ. Если в биосе нет такой функции, то нужно покупать качественные кулеры и менять их раз в год. Так у тебя кулер никак не остановится.

Сообщение отредактировал Cyrax: 27 Август 2006 — 06:42

#10 Loco.

95% случаев — банальный перегрев (остановка кулера).

#11 FERZ

  • Город: Как войдешь — налево.

Явно подавляющее большинство были процессоры Socket A

#12 qwe101

#13 krot

#14 Серёга

#15 Cyrax

  • Пол: Мужчина
  • Город: Троицк, Челябинская область

#16 TheSystem

А как понять "износился"? В нем должны дырки протереться или песок из него посыпаться?

Если поддерживаются нормальные условия по температуре и питанию, то теоретически любая микруха проживет вечно. Просто делать такие заявления таким субъектам, как производители процессоров, означает обрекать себя на судебные разборки в будущем, когда лет через двадцать издохнет какой-нибудь процык, работавший в тепличных условиях, а обещано было 100 лет..

Вот почитай старую тухлую темку — там, где про напряженность электрического поля в структуре кристалла, про предельные режимы работы материалов и термическую эрозию.

Последнее, видимо, наиболее актуально, поскольку локальный перегрев может быть скрыт глубоко в структуре кристалла и находиться далеко от термодиода, используемого для измерения температуры внутри кристалла и тем более далеко от любого датчика на плате.

К тому же наличие примесей и дефектов кристаллической структуры материала, из которого делают микросхемы, тем более такие большие, как процессоры, может привести к тому, что готовый процессор пройдет все тесты выходного контроля, благополучно выработает свой гарантийный срок и еще несколько лет проработает, а потом-таки помрет, несмотря на самые благоприятные условия по температуре, питания или даже в условиях downclocking'а — примесь есть примесь, случайность есть случайность..

Источник



Деградирует ли процессор со временем?

Важным вычислительным элементом любого компьютера является центральный процессор. Мы привыкли считать процессоры чуть ли не вечными. Сгорают блоки питания, перестают определяться жесткие диски, но процессоры стойко работают годами и временами даже десятилетия. Вы легко найдете на различных площадках, специализирующихся на продаже б/у, абсолютно работоспособные Pentium III, разменявшие второй десяток. Нередко всплывают новости, что различные ПК 30-летней давности продолжают трудиться в мелких компаниях просто потому, что они все еще справляются со своей работой.

Несмотря на то, что этот элемент является наиболее стойким к поломкам, такие случаи бывают. Что происходит с ним со временем работы, есть ли износ, по какой причине происходят поломки?

Чаще всего причиной появления этого недуга действительно является неправильная эксплуатация. Завышенное напряжение или высокие температуры. Например, если температура интенсивно скачет от минимальных до максимальных значений.

Повлияет ли производительность процессора с возрастом?

Основные причины из-за которых процессор может выйти из строя:

  • Механические Повреждения. Погнули ножки, поцарапали контактные площадки и тому подобное.
  • Неисправная система охлаждения и перегрев. Компьютер постоянно зависает или вырубаться из-за перегрева. Не функционирует кулер охлаждения или работает со сбоями, термопаста не выполняет свои теплопроводные свойства.
  • Перепады напряжения в сети. Могут негативно воздействовать на работу процессора и других комплектующих, вплоть до поломок.
  • Неисправность материнской платы или блока питания. Различные дефекты работы других комплектующих, так же негативно воздействуют на работоспособность процессора.
  • Разгон процессора. Приятный бонус, которым многие пользуются. Он с одной стороны хорош, но и есть негативные моменты. Чем выше напряжение, тем выше температуры работы и более ускоренный износ.
  • Естественный износ процессора со временем. Об этом мало информации, но после 10 лет работы, при условии стабильной работы системы охлаждения и отсутствия других негативных факторов, у процессора могут начаться определённые сдвиги в стабильной работе.

Как проявляется деградация CPU или GPU

Фактически, деградация – это деформация ядра, полное или частичное, из-за несоблюдения правил использования. Она происходит за разное количество времени. Какого-то определённого срока нет. Длительные перегревы, работа на высоких частотах с повышенной температурой непременно ведут к ускорению деградации. При работе в штатном режиме срок замедляется.

В подобном случае нарушается внутренняя структура чипа, и сигналы, которые он получает, будут обработаны с ошибкой, или и вовсе не будут завершены. Также стоит отметить, что чаще поражаются участки, ответственные за работу с интерфейсами и кэш памятью.

По итогу можно сделать вывод, что процессор со временем изнашивается, а за какой срок, зависит от факторов его эксплуатации.

Как избежать деградации процессора или снизить вероятность

Если процессор уже деградировал, то для предотвращения ошибок, может помочь понижение частоты функционирования, что разгрузит повреждённый транзистор и следовательно, он будет справляться со своей задачей какое то время. В большинстве случаев помогает и комбинированное понижение напряжения, совместно с частотой.

Что не стоит делать, чтобы избежать деградации процессора:

  • Для каждой архитектуры процессора, есть пороговое значение напряжения, при котором он может функционировать долгое время без повреждений. Данные значения обычно прописаны в спецификациях или на сайте производителя. Не повышайте напряжение процессора выше этого значения. В любом случае не стоит повышать напряжение выше 1.38 В. Производители отмечают именно эту максимальную цифру, хотя реально к деградации, хоть и растянутой по времени, приводит напряжение выше 1.4 В.
  • Не допускайте долговременного функционирования процессора при критической температуре. Данная температура прописана в спецификациях. Её превышение на длительное время, может привести к повреждению процессора и миграции электронов. Позаботьтесь о качественном охлаждении процессора.
  • Не используйте процессор в экстремальном разгоне для работы в режиме 247. В зависимости от экземпляра процессора, это тоже одна из основных причин выхода процессора из строя. Процессор работает на износ и велик шанс того, что через несколько лет он откажется проходить тесты на этой же частоте. Понижение частоты процессора, в большинстве случаев помогает избежать ошибок в работе.

Изменения CPU Semiconductor

Возможно, что максимальная тактовая частота, на которую способен процессор, со временем уменьшится. Однако в большинстве случаев это не приведет к тому, что теоретически максимально возможная скорость ЦП в течение года упадет ниже фактической рабочей скорости, установленной кварцевым генератором. Поэтому процессор, который был сохранен в течение года, будет работать с той же скоростью, что и первоначально идентичный процессор, который непрерывно использовался в течение года.

Похожее:  Почему компьютер перезагружается сам 17 основных причин

Терморегуляция процессора

Многие процессоры снижают свою скорость, если их температура превышает заданный порог. Основные факторы, которые могут привести к перегреву годовалого процессора, не связаны с деградацией полупроводников в самом процессоре. Поэтому эти факторы не имеют отношения к сформулированному вопросу.

Маловероятно, что данная пара идентичных процессоров будет расходиться в течение одного года в достаточной степени, чтобы вызвать тепловые проблемы, которые требуют, чтобы один из них работал сам с пониженной скоростью.

Энергоэффективность процессора

Многие компьютеры, особенно портативные, аналогичным образом предназначены для снижения энергопотребления в режиме ожидания. Опять же, это не очень актуально для нашего вопроса.

Источник

Купили современный топовый процессор? Через пару лет он может перестать работать

ЕгорЕгор Морозов | 14 Июня, 2020 — 19:23

Мы привыкли считать процессоры чуть ли не вечными. Сгорают блоки питания, перестают определяться жесткие диски, но процессоры стойко работают годами и временами даже десятилетия. Вы легко найдете на различных площадках, специализирующихся на продаже б/у, абсолютно работоспособные Pentium III, разменявшие второй десяток. Нередко всплывают новости, что различные ПК 30-летней давности продолжают трудиться в мелких компаниях просто потому, что они все еще справляются со своей работой.

Конечно, процессоры все же могут отправиться в кремниевую Вальгаллу, но чаще всего это случается во вине пользователя или выхода из строя сопутствующего оборудования. Так, например, еще в конце 90-ых часть (если не большинство) процессоров не имели защиты от перегрева, а ведь среди них уже встречались горячие камни. Как итог, ошибка с установкой системы охлаждения вполне могла привести к тому, что процессор нагревался за сотню градусов и быстро уходил в мир иной.

Современные CPU умеют сбрасывать частоты при перегреве или вовсе отключаться, так что убить их таким способом у вас не получится. Но при этом никто не отменял проблемы с остальным оборудованием. Пробило мосфет в цепи питания платы? Процессор моментально умирает от 12 вольт вместо нужных 1-1.5. Установили неисправную ОЗУ? Может выйти из строя контроллер памяти в CPU, или же он сам. У автора лично был случай, когда одна планка убила 3 полностью рабочих процессора, и только потом пришло понимание, что проблема в ней, а не в плате.

Короче говоря, сами по себе процессоры умирают крайне редко. Едва ли вы за всю свою жизнь встретите CPU, который работал-работал и вдруг просто так сам по себе сгорел, при этом остальные комплектующие с другим процессором продолжают работать нормально. Однако последний год я все чаще сталкиваюсь с тем, что CPU относительно быстро ухудшают свои частотные характеристики от процесса, который все считают крайне медленным — от деградации кремниевого кристалла.

Минутка физики

Ни для кого не секрет, что современные процессоры состоят из многих миллионов специальных полупроводниковых устройств, а именно полевых транзисторов. Не будем вдаваться глубоко в теорию — нам достаточно знать, что такой транзистор имеет четыре области: исток и сток, соединенные каналом, и затвор между ними. По умолчанию ток протекает от истока к стоку через канал, что ожидаемо с учетом названия этих областей. Однако если на затвор подать напряжение, то область канала становится уже. Повышая напряжение дальше, можно дойти до определенного значения, при котором ток носителей заряда (электронов) полностью прекращается — транзистор входит в так называемый режим отсечки.

Таким образом, регулируя напряжение на затворе, можно использовать полевые транзисторы как своеобразные переключатели, и именно это их свойство и лежит в основе процессоров. Казалось бы, все отлично, однако тут в дело вступает процесс деградации кремниевого кристалла — электромиграция. Все дело в том, что при больших токах происходит процесс диффузии ионов металла из истока в канал.

Чем это грозит? Ну, пока мы не подаем на затвор напряжение, все хорошо — электрончики бодро бегут к стоку. Но, допустим, мы хотим закрыть канал и подаем на затвор нужное для этого напряжение. И. ничего не происходит. Ток продолжает идти. Да, в этом виноваты ионы металла, которые делают область канала уже, поэтому электронам становится проще перескочить в область истока. И теперь, чтобы запретить им это делать, нужно подавать на затвор большее напряжение. Однако, увеличивая напряжение между затвором и истоком, мы также увеличиваем и силу тока, что ускоряет процесс электромиграции. А это, в свою очередь, приводит к еще более быстрому уменьшению области канала, что потребует дальнейшего повышения напряжения. Вот и получается такой замкнутый порочный круг.

С физикой почти разобрались, осталось рассмотреть только современные тенденции. Гонка по уменьшению техпроцесса и не думает останавливаться, и хотя все эти 10, 7 или 5 нанометров мнимые и получаются в основном перестройкой структуры транзисторов в кристалле, последние все равно становятся из года в год все меньше и меньше. Это приводит к тому, что у них уменьшается область канала — а, значит, эффект от деградации из-за электромиграции в них будет происходить быстрее, то есть чем меньше техпроцесс — тем раньше вы заметите, что ваш процессор перестает работать стабильно.

Также не стоит забывать про связь между частотой и напряжением. Частота CPU — это грубо говоря скорость переключения транзисторов, и она зависит от напряжения, так как чем оно больше, тем быстрее перекрывается канал, и чем больше раз в секунду можно сделать это «перекрытие». Поэтому для покорения более высокой частоты нужно более высокое напряжение, и, в обратную сторону, при простое современные процессоры могут сильно снижать частоту и напряжение для экономии энергии.

Проверяем на практике деградацию кристалла CPU

Так уж получилось, что я стал одним из первых владельцев процессора Core i7-8700K в России — он оказался у меня в руках в середине октября 2017 года. И с тех пор, уже около 2.5 лет, он является сердцем моего ПК. Сложно сосчитать, сколько я провел на нем различных моделирований физических процессов — их количество точно заходит за сотню. Проще будет сказать так: почти все это время процессор «пахал» по 8-12 часов в сутки 6 дней в неделю под близкой к максимальной нагрузке. Конечно, это не самое реалистичное его использование, зато процесс деградации отлично отслеживался.

Итак, изначально я добился стабильных 4.8 ГГц при напряжении 1.28 В. Стабильность я проверял в своем любимом IntelBurnTest — да, он дает нереалистично высокую нагрузку, зато быстро выявляет малейшие проблемы в работе процессора. Попробовав прогнать этот же тест спустя всего полгода, я получил BSOD, хотя в других вычислительных задачах все было хорошо. Но, дабы не получить через некоторое время ошибки в важных расчеты, я вновь решил добиться стабильности в этом стресс-тесте, и мне это удалось лишь при 1.3 В. Через полгода картина повторяется, и я повышаю напряжение до 1.32 В. Еще полгода — и уже 1.34 В. И вот совсем недавно, решив прогнать BurnTest, я получаю ошибку:

Попытка поднять напряжение до 1.36 В проваливается, ибо процессор перегревается (что ожидаемо с учетом «терможвачки» под его крышкой и тепловыделения под 170 Вт). И теперь, чтобы добиться стабильности, пришлось опустить частоту на 100 МГц, до 4.7 ГГц. В таком режиме снова все отлично:

Как видите, пока что все идет четко по теории: дабы побороть деградацию кристалла, пришлось несколько раз повышать напряжение, и, когда это перестало помогать, пришлось снижать частоту. В дальнейшем, очевидно, придется снижать частоту дальше — другого выхода просто нет, разве что брать новый CPU.

Похожее:  Характеристики процессора Intel Celeron G5925

Осталось проверить последнее утверждение: чем меньше техпроцесс, тем быстрее будут деградировать процессоры. Достаточно вбить в Google поисковый запрос «cpu degradation» и поставить срок выдачи ответов — последний год:

Выданные результаты связаны с первыми 7 нм десктопными процессорами — Ryzen 3000. А ведь они вышли всего около года назад, и пользователи уже жалуются на то, что они не держат частоты. Разумеется, пока что это единичные посты от тех, кто сильно нагружает процессор или же балуется разгоном, но несложно представить, что будет через пару лет, особенно если учесть, что новые Ryzen практически не разгоняются, а пользователи точно не будут менять, например, 12-ядерные CPU ближайшие лет эдак 5.

С процессорами от Intel все также плохо: в последние несколько лет инженеры компании решили продолжить частотную гонку, от которой они же сами отказались больше 10 лет назад, решив давить ядрами, представив в середине нулевых архитектуру Core Duo. Однако теперь, с учетом того, что у Intel последние три года все никак не удается создать новую архитектуру для десктопных процессоров, единственным способом поднять одноядерную производительность является банальное увеличение частоты.

И этим компания загнала себя в ловушку. Посудите сами, топовый 14 нм Core i7-6700K на архитектуре Skylake работает на частоте 4-4.2 ГГц при напряжении около 1.2 В. Конечно, его можно разогнать, и многие останавливались на 4.6-4.7 ГГц с напряжением около 1.35 В. А теперь посмотрим на новейший Core i9-10900K. Техпроцесс тот же, архитектура та же, но разумеется за 5 лет Intel смогла слегка улучшить качество выпускаемых кристаллов. Однако у этого процессора частота Turbo Boost на все ядра составляет уже 4.8 ГГц, и для стабильной работы на ней платы по умолчанию подают на него 1.3-1.35 В:


То есть, иными словами, режим, который еще несколько лет назад считался неплохим разгоном, теперь стал дефолтным. Вспомним теорию — повышение напряжения ведет к ускорению процесса электромиграции. То есть, компания Intel сознательно уменьшает время жизни своих новых процессоров. У меня до снижения частоты дело дошло спустя два года, хотя нужно отметить, что 4.8 ГГц для моего i7-8700K — это разгон более чем на 10% относительно максимальных 4.3 ГГц на все ядра, то есть теоретически я вышел за спецификации Intel.

А ведь для того же Core i9-10900K частота в 4.8 ГГц — абсолютно рабочая, и, напомню, архитектурно и физически это тот же самый процессор, в который просто добавили еще четыре ядра с их кэшем. И с учетом того, что это мощный 10-ядерный чип, едва ли пользователь будет его менять ближайшие лет 5, так что шанс столкнуться с деградации даже в стоке, без всякого разгона, оказывается достаточно большим.

И хорошо если у пользователя плата на чипсете Z490, на котором возможно управление множителем или напряжением, ведь под этот процессор скоро появится множество плат на более простых чипсетах, где «руление» этими параметрами будет просто-напросто заблокировано, и на них не будет никакой возможности вернуть процессору стабильность. И с учетом того, что гарантия на OEM-процессоры Intel составляет лишь год, компания просто разведет руками — дескать, покупайте новый CPU.

Выводы и размышления

Я, как и многие другие, считал современные процессоры практически неубиваемыми. У меня хватает знакомых с различными AMD FX-8000 и Intel Core i7 первого и второго поколения, которые по 7-8 лет держат свою частоту в неплохом разгоне без всяких проблем, и поэтому мне казалось, что и новые процессоры такие же «вечные». Увы — нет: судя по всему, время ощутимой деградации 32 нм и более «толстых» CPU явно выше 10 лет, а проблемы начинаются с 22 нм и «тоньше» — именно с ними больше всего сообщений о том, что процессоры перестают держать свою частоту спустя несколько лет.

Просто представьте — вы занимаетесь дома, например, рендерингом. Увидев, что AMD представила 7-нанометровый 16-ядерный Ryzen для обычного десктопного сокета AM4, вы конечно же его купили. Год, полтора — все хорошо, вы не можете нарадоваться на его производительность. А через пару лет получаете битый рендер. Решаете, что это случайная ошибка — особенно если учесть, что повторный расчет выполнился нормально. Однако вы начинаете получать битые рендеры все чаще и чаще: сначала раз в месяц, потом раз в пару недель, и вот вы уже вообще не можете нормально работать. Опечаленные, вы лезете в интернет и видите, что вы не один такой, и единственное решение проблемы — это урезать производительность или завышать напряжение, и повторять это придется постоянно. Будете ли вы счастливы от покупки такого CPU? Да едва ли. А ведь с учетом того, что в будущем транзисторы станут еще меньше, проблема может стать куда глобальнее.

Получается, что современные процессоры брать нельзя? Разумеется нет, просто нужно понимать, что они уже не такие долговечные, как были раньше, и, думаю, не нужно объяснять, что производителям это на руку. К тому же проблема касается, очевидно, лишь топовых высокочастотных решений — на каком-нибудь Core i3 или Ryzen 3 с частотой в 3.5 ГГц вы с ней скорее всего не столкнетесь. Также возникновение нестабильности через несколько лет маловероятно, если вы берете процессор для игр, ибо они все-таки нагружают топовые CPU достаточно слабо. А что делать тем, кто использует домашние процессоры для расчетов — вопрос остается открытым.

Источник

Деградация процессора. Актуальность проблемы в наше время

Ежегодно лидеры рынка демонстрируют качественный и функциональный рост своей продукции. Проектируют, создают и внедряют новые технологии в современные процессоры. Однако, всё ли так гладко? Смогли ли производители разрешить старые, но и по сей день актуальные вопросы? Погнали.

реклама

На написание этой статьи меня подтолкнула случайная новость, суть в том, что «синие» отозвали часть чипов семейства Apollo Lake. Те, в свою очередь, были подвержены деградации шины LPC. Несмотря на то, что проблема была актуальна для бюджетного ряда, и уже были выпущены обновленные модели, лишенные этого недостатка, остается вопрос. Насколько это актуально в наше время, и стоит ли думать об этом при покупке новых чипов.

Теория

Фактически, деградация — это деформация ядра, полное или частичное, из-за несоблюдения правил использования. Но, как в случае и с Apollo Lake, теперь понятно, что деградация может настать и в случае брака. Также стоит учитывать износ, чем он больше, тем выше шанс столкнуться с этой проблемой.

В подобном случае нарушается внутренняя структура чипа, и сигналы, которые он получает, будут обработаны с ошибкой, или и вовсе не будут завершены. Также стоит отметить, что чаще поражаются участки, ответственные за работу с интерфейсами и кэш памятью.

реклама

В свою очередь, чаще всего причиной появления этого недуга действительно является неправильная эксплуатация. Завышенное напряжение или высокие температуры. Например, если температура интенсивно скачет от минимальных до максимальных значений.

Что по разгону?

Любой разгон процессора означает повышение тактовых частот, вместе с напряжением, которое подаётся на чип. Но, означает ли это неотъемлемую деградацию? Нет. И вот почему.

Новые, впрочем как и многие предыдущие линейки процессоров, имеют разгонный потенциал. И при любых разгонных манипуляциях стоит помнить, как оптимально поднять частоту, напряжения, и обеспечить достаточное охлаждение.

реклама

И все же, оверклокинг — не приговор, многие кристаллы изначально поддерживают высокие значения частоты, и “режутся” они как правило в угоду маркетинга. Хотя, исключением могут быть отдельные ряды кристаллов, которые изначально не поддерживали штатных частот, и были использованы в других линейках. Опять же, нужно помнить, что с повышением напряжения, износ чипа становится сильнее.

Похожее:  Восемь лучших смартфонов со Snapdragon 845

Заключение

Несмотря, на внедрение все более продвинутых технологий защиты, как аппаратной так и программной, основа остается та же. Сам по себе чип — это кремниевый кристалл, и он в свою очередь, имеет свойства — расширяться и сужаться. Пока технология будет опираться на нынешний процесс создания полупроводниковых процессоров, избежать подобных вещей, почти невозможно.

реклама

Советы, как не столкнуться с подобным, достаточно просты. Не поднимать лишний раз допустимый порог напряжения. Не допускать критической температуры на долгий промежуток работы. Если вы уже столкнулись с этим, имеет смысл попытаться снизить частоту с напряжением к начальным, или более низким значениям.

Источник

Портится ли процессор со временем

Это определение можно сравнить с выражением, что жизнь есть ни что иное, чем продолжительный путь по дороге к смерти. В то время как некоторые с точки зрения философии могли бы найти эту аналогию довольно уместной, с технической точки зрения, такое высказывание является самым ужасным вариантом при моделировании жизненного цикла процессора. Давайте рассмотрим это подробнее: качество кремния часто определяется за счет способности процессора достигать и поддерживать желаемую стабильную частоту переключения на протяжении всей «жизни», при этом значение максимального номинального напряжения не должно превышать указанное в спецификации (плюс допуск). Так почему, если остаточный срок эксплуатации процессора зависит от напряжения, необходимого для достижения этих скоростей, каждый процессор приходит с одинаковым сроком гарантии — три года?

Ответ на этот вопрос довольно прост. Каждый процессор, вне зависимости от качества кремния, может длительно и безошибочно работать при соблюдении указанных допустимых окружающих условий (температуры, напряжения и т.д.) в течение периода не меньшего, чем гарантированный срок эксплуатации, при условии, что от него не потребуется большей производительности, чем может позволить его номинальная частота. Другими словами, получается, что вместо того, чтобы ограничить срок эксплуатации каждого процессора и предоставить соответствующие гарантийные обязательства, процессоры сортируют в зависимости от самой высокой достигаемой ими частоты при условии, что подаваемое напряжение не превышает максимально допустимого рабочего напряжения. Когда мы пытаемся понять этот факт, мы подходим к самой идее разгона – работы процессора в условиях, выходящих за номинальные пределы, установленные спецификациями вне зависимости от принципов надежности.

Как только вы признаете, что разгон по определению уменьшает срок эксплуатации любого процессора, становится легче оправдывать его более экстремальное использование. И в этом случае требуется время, чтобы понять, почему Intel придерживается жесткой политики «против разгонов», когда речь заходит о сохранении гарантии на их продукт. Слишком большое количество людей считает, что разгон «безопасен» до тех пор, пока они не увеличивают напряжение ядра их процессора – что является неверным. Повышение частоты работы процессора ведет к повышению температуры при нагрузках, что снижает срок эксплуатации. В свою очередь, лучшее охлаждение может стать хорошим вариантом сохранения работоспособности процессора для тех, кто стремится достичь его более длительной и безотказной работы, т.к. это позволит увеличить допустимый предел срока его эксплуатации на длительный период времени.

На графике представлены три кривые. Средняя кривая отображает минимальное требуемое напряжение, необходимое процессору для бесперебойной работы при 100%-й загрузке в течение периода времени, указанного по оси Х. В течение этого времени процессор подвергается воздействию максимального номинального напряжения ядра и при этом не разгоняется. К тому же имеют место все самые неблагоприятные факторы, и наш процессор E8500 работает на абсолютном максимуме выдерживаемой температуры в условиях неполадок, которая составляет 72.4ºC. Через три года, мы станем ожидать, что процессор «состарится» до такого состояния, что для стабильной работы потребуется подавать чуть более высокое напряжение на ядро – как указано выше, чуть меньше 1,15 В по сравнению с прежними 1,125 В.

Учитывая напряжение спада Vdroop и напряжение смещения Voffset, средний 45-нм двухъядерный процессор с идентификатором напряжения VID 1,25000 должен работать с окончательным напряжением под нагрузкой, составляющим около 1,21 В. Пунктирной зеленой линией рядом с центром графика показано фактическое напряжение питания процессора (Vcore). Следует иметь в виду, что линия тренда отображает минимальное напряжение, необходимое для непрерывной стабильной работы, поэтому до тех пор, пока она остается ниже линии фактического напряжения питания (средняя зеленая линия), процессор будет работать должным образом. Нижняя зеленая линия находится приблизительно на 5% ниже линии фактического напряжения питания и представляет собой пример смещения, которое может быть использовано для сохранения и увеличения допустимых значений напряжения.

Точка пересечения средней линии (минимальное требуемое напряжение) и средней зеленой линии (фактическое напряжение питания) предсказывает тот момент во времени, когда процессор должен «дать сбой», хотя увеличение значения напряжения питания должно обеспечить более длительную работу процессора. Также следует обратить внимание на то, как средняя линия проходит через нижнюю зеленую линию, что отображает желаемый запас стабильности в трехлетней точке вместе с моментом окончания гарантии. Красная линия показывает, какое оказывается воздействие при работе процессора в температурных условиях, превышающих указанные значения в спецификации, относительно номинального срока эксплуатации продукта – мы можем увидеть, что ускоренное старение процессора было вызвано более высокими рабочими температурами. Синяя линия является примером того, как понижение средней температуры процессора может привести к увеличению его срока службы.

Поскольку отказы в работе по истечению срока эксплуатации вызваны уменьшением запаса допустимых значений напряжения (чрезмерный износ/старение), мы можем определить очень четкую взаимосвязь между учащением/сокращением такого рода отказов и рабочей средой, в которой находится указанный процессор. Здесь мы видим, что более жесткие условия эксплуатации воздействуют на наблюдаемую интенсивность отказов согласно новой кривой интенсивности отказов в работе по истечению срока эксплуатации. При работе процессора вне установленных рабочих значений, при его приближении к окончанию гарантийного периода мы больше не можем с уверенностью приписывать любой отказ в работе какой бы то ни было неизвестной причине. К тому же поскольку Intel не в состоянии различать типы отказов, в каждом гарантийном случае подозревается отказ в работе по причине разгона процессора или его неправильного использования, таким образом, политика предприятия запрещает любой разгон системы, если пользователю важно сохранение гарантии.

Итак, что же все это значит? На сегодняшний день мы знаем, что из трех основных типов отказов, отказы в работе из-за старения (т.е. износа) в большинстве случаев напрямую зависят от того, как и в каких условиях работает процессор. Очевидно, что пользователь играет важную роль в создании и поддержании благоприятной среды для эксплуатации процессора. Здесь учитывается использование высококачественных систем охлаждения и термопаст, активное использование вентиляторов для обеспечения максимальной вентиляции корпуса, и, наконец, надлежащий контроль за состоянием воздуха в помещении. Также мы узнали, что Intel создала легкие и понятные рекомендации, касательно необходимых усилий по обеспечению более высокой продолжительности жизни ваших устройств.

Те, кто предпочитают игнорировать эти рекомендации и / или выходить за рамки значений, указанных в любой спецификации, делают это на свой страх и риск. Правда, это вовсе не означает, что подобные действия обязательно вызовут немедленный, непоправимый ущерб или приведут к отказу в работе. Речь здесь скорее идет о том, что каждое решение, принятое в ходе разгона имеет реальные и вполне измеримые «последствия». У некоторых людей этот факт может не вызвать причин для беспокойства, так как забота о сроке службы устройства не является их приоритетом. С другой стороны, возможно, ими будут приняты профилактические меры для того, чтобы сгладить воздействие более высоких напряжений, такие как использование водяного охлаждения или охлаждения за счет фазового перехода. В любом случае, основные принципы остаются теми же – разгон никогда не бывает без риска. И так же, как и в жизни, пойти на разумный риск иногда может быть единственным верным решением.

Источник