Полный обзор чипа Apple A10

На традиционном сентябрьском мероприятии Apple представила два новых процессора — A10 Fusion для iPhone 7 и iPhone 7 Plus и S2 для Apple Watch Series 2. Несмотря на то, что о процессоре S2 не было сказано практически ничего, презентации чипа A10 компания уделила гораздо больше времени. Приписка “Fusion” в названии чипа указывает на его гетерогенную архитектуру, которая включает два высокопроизводительных ядра с высокой пропускной способностью в паре с двумя меньшими, энергоэффективными ядрами. Подобный подход позволяет не только повысить время автономной работы, но и увеличить надежность устройства, тогда как ремонт iPhone 7 при повреждении чипа едва ли станет сложнее.

В итоге мы получили отличное решение в отношении баланса производительности и энергоэффективности, и за последний год инженеры Apple разработали самый передовой SoC процессор с момента перехода на 64-bit архитектуру.

Общая информация

О самых крупных технических изменениях, которые включает Apple A10, нам сообщили в самом начале презентации: новый процессор может похвастаться четырьмя ядрами с 3.3 миллиардами транзисторов. На данный момент нам неизвестно количество транзисторов в предыдущем чипе компании, Apple A9, однако для A8 этот показатель составлял 2 миллиарда, из чего следует вывод, что показатель A9 располагается где-то посередине, то есть прошлогодний чип имеет менее 3 миллиардов транзисторов. Компания Apple продолжает развивать свой флагманский проект из года в год. К примеру, недавно Куперниновцы запатентовали прозрачный дисплей и не собираются останавливаться.

Таким образом A10 получился на 50% “больше” в сравнении с A8, однако тут стоит отметить, что некоторая часть транзисторов приходится на новые низкопроизводительные ядра. В основе графики, в свою очередь, лежит знакомая шестикластерная подсистема, а объем L1- и L2-кэша остался прежним.

Судя по всему, 16-нм техпроцесс FinFET, который фирма TSMC использовала для производства чипов A9, применяется и в новом процессоре, так что физические размеры A10 могли увеличиться в сравнении с предшественником. Apple имела возможность комплектовать часть смартфонов 14-нм чипами от Samsung, однако для упрощения производства компания остановилась на более старой технологии, уделив внимание оптимизации размеров чипа и его размещения в корпусе устройства.

Производительность

Производительность процессора традиционно не осталась в тайне: в пике A10 работает на 40% быстрее предшественника, чипа A9. Частота процессора выросла на 25%, теперь этот показатель составляет 2.33 ГГц, тогда как iPhone 6s имел чип с частотой 1.85 ГГц. Большого прироста, по видимому, удалось добиться улучшениями в архитектуре.

25-процентный прирост частоты является значимым достижением, особенно если учесть тот факт, что A10 построен на базе того же техпроцесса. Подобных результатов, по видимому, позволила добиться улучшенная система теплоотвода и новая гетерогенная архитектура с двумя дополнительным ядрами.

Стоит отметить, что вместе с созданием пары новых “медленных” ядер Apple открыла абсолютно новый спектр опций по динамическому изменению напряжения и частоты, что позволяет при необходимости полностью отключать ядра или их отдельные разделы. Кроме того, для использования в iPhone 7 Apple разработала собственный контроллер, который позволяет переводить рабочую нагрузки между ядрами.

Некоторые источники указывают на то, что компания применяет специальную схему деления кэш-памяти, благодаря которой память ядра при переключении не обязана постоянно обращаться к кэшу предыдущего ядра, что позволяет быстрее вводить те или иные блоки процессора в работу.

Увеличение частоты до 2.33 ГГц позволило Apple вплотную приблизиться к показателям конкурентов, однако достижение этих результатов потребовало от компании некоторых изменений в работе транзисторов. Так, Apple повысила напряжение и выбрала транзисторы с высоким показателем статической утечки. Подобные жертвы прошли для чипа сравнительно безболезненно, поскольку, как было отмечено выше, чип имеет лучшую схему теплоотвода, а накапливание статической энергии сводится на нет благодаря простой возможности отключения схемы с переходом на низкопроизводительные ядра.

Дополнительные ядра

Новые низкопроизводительные ядра Apple A10 представляют для нас не меньший интерес, так как насчет их происхождения в интернете существует огромное количество спекуляций. Существует мнение, что эти ядра не являются собственной разработкой Apple и берут свое начало в ARM, у которой имеются подобные схемы вроде Cortex-A53. Если это действительно так, мы можем лишь задаться вопросом, почему Apple впервые за долгое время решила отказаться от внутренней разработки в пользу сторонних технологий.

Стоит отметить, что чип первого поколения Apple Watch также представляет собой сторонний процессор Cortex-A7. Series 2, в свою очередь, перешли на двухъядерный чип S2, ядра которого, по мнению экспертов, могли быть включены и в A10 в качестве низкопроизводительного блока.

Главный вопрос заключается в том, почему Apple перешла на гетерогенную архитектуру именно сейчас. Судя по всему, A-серия процессоров в своем классическом исполнении достигла своего логического потолка, и дальнейшее увеличение производительности оказалось невозможно без повышения требований к питанию процессора, что и стало толчком к разделению чипа на высоко- и низкопроизводительные блоки.

Кроме того, размер полупроводниковой микросхемы является ограниченным, но до тех пор, пока каких-либо преимуществ можно добиться путем увеличения физического размера чипа, Apple будет идти этой дорогой. Расширенный функционал процессора обработки изображения, в свою очередь, мог стать поводом для увеличения кэш-памяти L3 SRAM с 4 до 8 МБ, что также могло сказаться на размере полупроводниковой микросхемы.

Графическая подсистема

Презентация чипа A10 закончилась на рассказе о графической подсистеме процессора. К счастью, Фил Шиллер рассказал о том, что графика базируется на шестикластерной разработке, что соответствует показателям чипа A9. Если говорить о производительности графической подсистемы, то A10 оказался на 50% быстрее предшественника, потребляя при рендеринге на треть меньше энергии.
Если говорить о производительности Apple A10 в условиях реальной эксплуатации, то на сегодняшний день мы имеем один из самых быстрых процессоров на рынке, чего во многом позволила добиться программная оптимизация и внедрение собственного интерфейса Metal для программирования сложных приложений. Кроме того, внедрение новой архитектуры позволило Apple открыть дорогу для дальнейшей модернизации чипа A10, что гарантирует долгую жизнь этой технологии.

Аренда и подмена

Предлагаем услугу аренды Macbook и iMac. Предоставляем аппарат на подмену на время ремонта.

Источник



Время собирать камни. Обзор флагманского центрального процессора AMD A10-8890K [пошучено]

Линейка гибридных процессоров AMD Kaveri была представлена в самом начале прошлого года. С тех пор процессорный гигант капитально обновлял модельный ряд этих устройств, однако ожидаемый выпуск нового поколения APU был отложен. На компьютерной выставке CES семейство «камней» под кодовым именем Carrizo представили лишь в виде прототипов и презентаций. Пришлось дождаться весны, чтобы вплотную познакомиться с инновационными 20-нм решениями «красных». Итак, встречаем флагманский гибридный процессор AMD A10-8890K!

AMD верна своей идеологии. Компания уже достаточно давно продвигает в массы гибридные процессоры, в которых роль первой скрипки все чаще играет встроенная графика. Так, в Kaveri на долю интегрированного GPU приходится 47% транзисторного бюджета. Не изменилась ситуация и с появлением Carrizo. Основная «фишка» подобных решений — гетерогенные вычисления, ведь суммарная производительность графической составляющей заметно превосходит эффективность вычислительных модулей. Главное — стимулировать разработчиков ПО задействовать возможности и GPU, и CPU. Как бы там ни было, компании AMD необходимо навязывать конкуренцию Intel. И новое поколение гибридных процессоров должно ей в этом помочь.

Технические характеристики

Первая официальная информация относительно гибридных процессоров Carrizo появилась в декабре прошлого года. Впервые AMD сначала презентовала новые решения для ноутбуков. С одной стороны, удивительно, ведь и Llano, и Trinity, и Richland, и Kaveri предназначались в первую очередь для настольных решений. Гибридного процессора с высокой производительностью, но и достойной энергоэффективностью у «красных» нет до сих пор. С другой стороны, инженерам AMD удалось-таки в рамках 28-нм техпроцесса снизить энергопотребление Carrizo практически вдвое в сравнении с Kaveri. Собственно говоря, энергоэффективность — это главная «фишка» процессорной архитектуры Excavator. А на что способен 20-нм техпроцесс? Сейчас узнаем!

AMD A10-8890K AMD A10-7850K AMD Athlon X4 860K
Кодовое имя Carrizo Kaveri Kaveri
Техпроцесс 20 нм 28 нм 28 нм
Сокет FM3 FM2+ FM2+
Число ядер/потоков 6/6 4/4 4/4
Тактовая частота (Boost) 4,1 (4,4) ГГц 3,7 (4,0) ГГц 3,7 (4,0) ГГц
Встроенный контроллер памяти Двухканальный DDR4-2133 Двухканальный DDR3-2133 Двухканальный DDR3-2133
Кэш третьего уровня Нет Нет Нет
Число линий PCI Express 16 16 16
Встроенная графика Radeon R7, 800 МГц Radeon R7, 720 МГц Нет
Уровень TDP 95 Вт 95 Вт 95 Вт
Цена N/A 8000 руб. 3800 руб.
Price.ru

Флагманским решением AMD стал гибридный процессор A10-8890K. Как видно из названия, этот «камень» оснащен разблокированным множителем. Хотя номинальная тактовая частота APU сама по себе вызывает уважение. Так, в режиме Boost чип может работать на скорости 4,4 ГГц. В итоге A10-8890K стабильно на целых 400 МГц быстрее бывшего флагмана линейки — AMD A10-7850K.

Для тех, кто не в курсе, Carrizo — это симбиоз двух архитектур. Вычислительные ядра (стандартно объединенные в модули) выполнены согласно разработкам проекта Excavator. Графическая часть имеет архитектуру GCN последнего поколения. Инженерам AMD удалось значительно упаковать элементы кристалла. В итоге площадь чипа уменьшилась на 23%, если сравнивать Carrizo с Kaveri, и на 40% энергоэффективнее, чем Steamroller, изготовленный 28-нанометровому техпроцессу. Excavator отличается дизайном библиотеки высокой плотности с уменьшенной областью подложки. Большинство компонентов также уменьшено. Блок вычислений с плавающей точкой уменьшили на 38%, на 35% блоки FMAC (fused multiply-accumulate, совмещенное умножение-сложение с однократным округлением), а контроллер кэша инструкций — еще на 35%. Чип Carrizo сам по себе использует оптимизированный для GPU металлический стек высокой плотности для большей компактности.

Похожее:  Процессор многоядерный тактовая частота

Каждый модуль Excavator получил два ядра x86-64 CPU. В A10-8890K их три. Следовательно, модель имеет шесть физических ядер. Архитектура кэша у Excavator не изменилась. Третьего уровня нет. Кэш L2 общий для каждого модуля. Как и кэш инструкций. А вот для каждого ядра предназначено по 16 Кбайт кэша данных.

Напомню, что A10-7850K имеет полезную площадь чипа в размере 245 мм 2 . Этот параметр позволил разместить на кристалле 2,41 млрд транзисторов. У A10-8890K данный показатель практически удвоился. При чуть большей площади кристалла в размере 250 мм 2 . Для сравнения: ноутбучная вариация APU Carrizo имеет в своем арсенале 3,1 млрд транзисторов.

Источник

Тестирование APU AMD A10-7850K и A10-7700К в играх. Процессорная часть

Выход процессоров AMD Kaveri ознаменовал два важных нововведения в линейке APU:

  • Переход на обновленную процессорную архитектуру Steamroller.
  • Переход на обновленное графическое ядро, основанное на архитектуре GCN 1.1.

В данном обзоре будет рассмотрена процессорная часть A10-7850K и A10-7700K. Для этого они будут протестированы в специально подобранных «процессорозависимых» играх. Для уменьшения влияния графической подсистемы все участники будут протестированы в разрешении 1280 х 1024.

Соперниками новичков AMD стали:

  • FX-8320 BE;
  • FX-6350 BE;
  • FX-4350 ВЕ;
  • A10-6800K;
  • A10-6700;
  • A8-6600K;
  • A8-6500;
  • A10-5800K;
  • A10-5700;
  • A8-5600K;
  • A8-5500;
  • Athlon II X4 760K;
  • Core i5-4430;
  • Core i3-4340;
  • Core i3-4130;
  • Core i5-3330;
  • Core i3-3250;
  • Core i3-3210.

Тестовая конфигурация

Тесты проводились на следующем стенде:

  • Материнская плата №1: GigaByte GA-Z87X-UD5H, LGA 1150, BIOS F7;
  • Материнская плата №2: GigaByte GA-Z77X-UD5H, LGA 1155, BIOS F14;
  • Материнская плата №3: GigaByte GA-990FXA-UD5, АМ3+, BIOS F12;
  • Материнская плата №4: ASRock FM2A88X Extreme6+, FM2+, BIOS 2.90;
  • Видеокарта: GeForce GTX 780 3072 Мбайт — 863/6008 МГц (Palit);
  • Система охлаждения CPU: Corsair Hydro Series H100 (

  • A10-7850K — 3700 @ 4500 МГц;
  • A10-7700K — 3400 @ 4500 МГц;
  • FX-8320 BE — 3500 @ 4600 МГц;
  • FX-6350 BE — 3900 @ 4700 МГц;
  • FX-4350 ВЕ — 4200 @ 4700 МГц;
  • A10-6800K — 4100 @ 4700 МГц;
  • A10-6700 — 3700 @ 4700 МГц;
  • A8-6600K — 3900 @ 4700 МГц;
  • A8-6500 — 3500 @ 4600 МГц;
  • A10-5800K — 3800 @ 4500 МГц;
  • A10-5700 — 3400 @ 4200 МГц;
  • A8-5600K — 3600 @ 4400 МГц;
  • A8-5500 — 3200 @ 4100 МГц;
  • Athlon II X4 760K — 3800 @ 4500 МГц;
  • Core i5-4430 — 3000 МГц;
  • Core i3-4340 — 3600 МГц;
  • Core i3-4130 — 3400 МГц;
  • Core i5-3330 — 3000 @ 3600 МГц;
  • Core i3-3250 — 3500 МГц;
  • Core i3-3210 — 3200 МГц.

Программное обеспечение:

  • Операционная система: Windows 7 x64 SP1;
  • Драйверы видеокарты: NVIDIA GeForce 337.50 Beta.
  • Утилиты: FRAPS 3.5.9 Build 15586, AutoHotkey v1.0.48.05, MSI Afterburner 3.0.0 Beta 19.

реклама

Инструментарий и методика тестирования

Для более наглядного сравнения процессоров все игры, используемые в качестве тестовых приложений, запускались в разрешении 1280 х 1024.

В качестве средств измерения быстродействия применялись встроенные бенчмарки, утилиты FRAPS 3.5.9 Build 15586 и AutoHotkey v1.0.48.05. Список игровых приложений:

  • Assassin’s Creed 3 (Бостонский порт).
  • Batman Arkham City (Бенчмарк).
  • Call of Duty: Black Ops 2 (Ангола).
  • Crysis 3 (Добро пожаловать в джунгли).
  • Far Cry 3 (Глава 2. Охотники).
  • Formula 1 2012 (Бенчмарк).
  • Hard Reset (Бенчмарк).
  • Hitman: Absolution (Бенчмарк).
  • Medal of Honor: Warfighter (Сомали).
  • Saints Row IV (Начало игры).
  • Sleeping Dogs (Бенчмарк).
  • The Elder Scrolls V: Skyrim (Солитьюд).

Во всех играх замерялись минимальные и средние значения FPS. В тестах, в которых отсутствовала возможность замера минимального FPS, это значение измерялось утилитой FRAPS. VSync при проведении тестов был отключен.

Разгон процессоров

Процессоры разгонялись следующим образом. Стабильность разгона проверялась утилитой ОССТ 3.1.0 «Perestroika» путем получасового прогона ЦП на максимальной матрице с принудительной 100% нагрузкой. Соглашусь с тем, что разгон тестируемых CPU не является абсолютно стабильным, но для любой современной игры он подходит на все сто.

При максимальном разгоне у всех процессоров AMD частота контроллера памяти была поднята до 2400-2800 МГц.

Штатный режим. Тактовая частота 3700 МГц, частота системной шины 100 МГц (100х37), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.31 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4500 МГц. Для этого множитель процессора был поднят до значения 45 (100х45), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (100х21.33), Turbo Core и APM – выключены.

Штатный режим. Тактовая частота 3400 МГц, частота системной шины 100 МГц (100х34), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.29 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4500 МГц. Для этого множитель процессора был поднят до значения 45 (100х45), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (100х21.33), Turbo Core и APM – выключены.

реклама

Штатный режим. Тактовая частота 3500 МГц, частота системной шины 200 МГц (200х17.5), частота DDR3 – 1866 МГц (200х9.33), напряжение питания ядра 1.27 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4600 МГц. Для этого множитель процессора был поднят до значения 23 (200х23), напряжение питания ядра – до 1.53 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (200х10.67), Turbo Core и APM – выключены.

Штатный режим. Тактовая частота 3900 МГц, частота системной шины 200 МГц (200х19.5), частота DDR3 – 1866 МГц (200х9.33), напряжение питания ядра 1.28 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4700 МГц. Для этого множитель процессора был поднят до значения 23.5 (200х23.5), напряжение питания ядра – до 1.53 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (200х10.67), Turbo Core и APM – выключены.

реклама

Штатный режим. Тактовая частота 4200 МГц, частота системной шины 200 МГц (200х21), частота DDR3 – 1866 МГц (200х9.33), напряжение питания ядра 1.33 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4700 МГц. Для этого множитель процессора был поднят до значения 23.5 (200х23.5), напряжение питания ядра – до 1.52 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (200х10.67), Turbo Core и APM – выключены.

Штатный режим. Тактовая частота 4100 МГц, частота системной шины 100 МГц (100х41), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.31 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

реклама

Процессор удалось разогнать до частоты 4700 МГц. Для этого множитель процессора был поднят до значения 47 (100х47), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (100х21.33), Turbo Core и APM – выключены.

Штатный режим. Тактовая частота 3700 МГц, частота системной шины 100 МГц (100х37), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.29 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4700 МГц. Для этого частота шины была поднята до 112 МГц (112х42), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2090 МГц (112х18.66), Turbo Core – включен и APM – выключен.

реклама

Штатный режим. Тактовая частота 3900 МГц, частота системной шины 100 МГц (100х39), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.3 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4700 МГц. Для этого множитель процессора был поднят до значения 47 (100х47), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (100х21.33), Turbo Core и APM – выключены.

Штатный режим. Тактовая частота 3500 МГц, частота системной шины 100 МГц (100х35), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.28 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4600 МГц. Для этого частота шины была поднята до 115 МГц (115х40), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2146 МГц (115х18.66), Turbo Core – включен и APM – выключен.

реклама

Штатный режим. Тактовая частота 3800 МГц, частота системной шины 100 МГц (100х38), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.32 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4500 МГц. Для этого множитель процессора был поднят до значения 45 (100х45), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (100х21.33), Turbo Core и APM – выключены.

Штатный режим. Тактовая частота 3400 МГц, частота системной шины 100 МГц (100х34), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.3 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

реклама

Процессор удалось разогнать до частоты 4200 МГц. Для этого частота шины была поднята до 114 МГц (114х37), напряжение питания ядра – до 1.43 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2127 МГц (114х18.66), Turbo Core – включен и APM – выключен.

Штатный режим. Тактовая частота 3600 МГц, частота системной шины 100 МГц (100х36), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.31 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4400 МГц. Для этого множитель процессора был поднят до значения 44 (100х44), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (100х21.33), Turbo Core и APM – выключены.

Штатный режим. Тактовая частота 3200 МГц, частота системной шины 100 МГц (100х32), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.29 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4100 МГц. Для этого частота шины была поднята до 117 МГц (117х35), напряжение питания ядра – до 1.42 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2183 МГц (117х18.66), Turbo Core – включен и APM – выключен.

Athlon II X4 760K

Штатный режим. Тактовая частота 3800 МГц, частота системной шины 100 МГц (100х38), частота DDR3 – 1866 МГц (100х18.66), напряжение питания ядра 1.32 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

Процессор удалось разогнать до частоты 4500 МГц. Для этого множитель процессора был поднят до значения 44 (100х45), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (100х21.33), Turbo Core и APM – выключены.

Core i5-4430

Штатный режим. Тактовая частота 3000 МГц, базовая частота 100 МГц (100х30), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.06 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – включен.

Core i3-4340

Штатный режим. Тактовая частота 3600 МГц, базовая частота 100 МГц (100х36), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.05 В, напряжение питания DDR3 – 1.5 В, Hyper Threading – включен.

Core i3-4130

Штатный режим. Тактовая частота 3400 МГц, базовая частота 100 МГц (100х34), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.04 В, напряжение питания DDR3 – 1.5 В, Hyper Threading – включен.

Core i5-3330

Штатный режим. Тактовая частота 3000 МГц, базовая частота 100 МГц (100х30), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.1 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – включен.

Процессор удалось разогнать до частоты 3600 МГц. Для этого множитель был поднят до 34 (105х34), частота DDR3 – 2240 МГц (105х21.33), напряжение питания – до 1.125 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – включен.

Core i3-3250

Штатный режим. Тактовая частота 3500 МГц, базовая частота 100 МГц (100х35), частота DDR3 – 1333 МГц (100х13.3), напряжение питания 1.1 В, напряжение питания DDR3 – 1.5 В, Hyper Threading – включен.

Core i3-3210

Штатный режим. Тактовая частота 3200 МГц, базовая частота 100 МГц (100х32), частота DDR3 – 1333 МГц (100х13.3), напряжение питания 1.08 В, напряжение питания DDR3 – 1.5 В, Hyper Threading – включен.

Источник

Процессоры AMD A10-6800K, A10-7800 и A10-7850K

Сегодня у нас на повестке дня очередное «проходное» тестирование, связанное в первую очередь со сменой тестовой методики, а не с выпуском новых процессоров. Тем более, что темой будет платформа, где с выходом новых моделей дела обстоят не лучшим образом, несмотря на все ее привлекательные стороны: вот уже больше года как появился A10-7850K, и он же продолжает оставаться самым мощным решением в линейке. Более того, никакого существенного изменения ситуации в ближайшем будущем не планируется. Примерно в середине года должен появиться A10-8850K, однако кроме совсем незначительного увеличения тактовых частот от него (равно как и от других моделей обновленной линейки) ничего не ожидается. Таким образом, специально ждать появления процессоров Kaveri Refresh не имеет смысла, а что-то более интересное может появиться лишь в следующем году (и в рамках абсолютно новой платформы, скорее всего полностью несовместимой с сегодняшней). В общем, если необходимость что-то приобрести есть, это можно делать сейчас. Причем даже не обязательно выбирать именно Kaveri — хотя отгрузка процессоров на базе предыдущей архитектуры уже прекращена, в торговой сети они все еще встречаются, причем по более привлекательным, чем современные модели, ценам. Вопрос только один: разумна ли экономия? Да и нужна ли топовая модель? Но это без тестов выяснить невозможно, так что сейчас мы к ним и приступим.

Конфигурация тестовых стендов

Процессор AMD A10-6800K AMD A10-7800 AMD A10-7850K
Название ядра Richland Kaveri Kaveri
Технология пр-ва 32 нм 28 нм 28 нм
Частота ядра std/max, ГГц 4,1/4,4 3,5/3,9 3,7/4,0
Кол-во ядер(модулей)/потоков вычисления 2/4 2/4 2/4
Кэш L1 (сумм.), I/D, КБ 128/64 192/64 192/64
Кэш L2, КБ 2×2048 2×2048 2×2048
Кэш L3, МиБ
Оперативная память 2×DDR3-2133 2×DDR3-2133 2×DDR3-2133
TDP, Вт 100 65/45 95
Графика Radeon HD 8670D Radeon R7 Radeon R7
Кол-во ГП 384 512 512
Частота std/max, МГц 844 720 720
Цена $138(73), T-10387700 $154(66), T-10674780 $162(67), T-10674781

A10-6800K и A10-7850K мы уже сравнивали в конце прошлого года и пришли к выводу, что эти модели примерно эквивалентны по производительности, но первая стоит дешевле. Однако обновление программного обеспечения в новой версии методики вполне может привести к тому, что и расклад изменится — вот это-то мы и проверим. Заодно добавив к испытуемым A10-7800: он немного экономичнее и немного медленнее, чем топовая модель, чем и интересен. Отметим, что как раз 7800 — фактически единственное существенное расширение ассортимента процессоров для FM2+ в 2014 году: ранее настольные A10 на базе Kaveri в TDP 65 Вт и менее не укладывались. Если же рассматривать работу с уменьшенным до 45 Вт теплопакетом (что может быть актуально для компактного решения), ситуация и вовсе усугубляется тем, что и для FM2 AMD ранее выпускала лишь пару пригодных моделей, которые было не так-то просто приобрести. Сейчас же проблема отпала. И единственный вопрос — каковы будут потери в производительности. Особенно на фоне топовых моделей, которые заведомо «не влазят» в небольшие корпуса Mini-ITX из-за «серьезного» теплопакета.

Процессор Intel Core i7-5500U
Название ядра Broadwell
Технология пр-ва 14 нм
Частота ядра std/max, ГГц 2,4/3,0
Кол-во ядер/потоков вычисления 2/4
Кэш L1 (сумм.), I/D, КБ 64/64
Кэш L2, КБ 2×256
Кэш L3, МиБ 4
Оперативная память 2×DDR3-1600
TDP, Вт 15
Графика HDG 5500
Кол-во ГП 96
Частота std/max, МГц 300/950

С кем эти процессоры сравнить? Такой вопрос всегда является актуальным в начале цикла тестирований — слишком мала база уже полученных тестовых результатов. Поэтому волевым решением мы не стали подыскивать конкурентов «в лоб», а взяли цифры, полученные при тестировании Core i7-5500U. Понятно, что модель ультрабучная, хотя. Хотя многих в наше время волнуют вопросы непосредственного сравнения производительности ноутбуков и десктопов, так что интересно поискать на него непосредственный ответ.

Методика тестирования

Для оценки производительности мы использовали нашу методику измерения производительности с применением бенчмарков iXBT Application Benchmark 2015 и iXBT Game Benchmark 2015. Все результаты тестирования в первом бенчмарке мы нормировали относительно результатов референсной системы, которая в этом году будет одинаковой и для ноутбуков, и для всех остальных компьютеров, что призвано облегчить читателям нелегкий труд сравнения и выбора:

Процессор Intel Core i5-3317U
Чипсет Intel HM77 Express
Память 4 ГБ DDR3-1600 (двухканальный режим)
Графическая подсистема Intel HD Graphics 4000
Накопитель SSD 128 ГБ Crucial M4-CT128M4SSD1
Операционная система Windows 8 (64-битная)
Версия видеодрайвера графического ядра Intel 9.18.10.3186

iXBT Application Benchmark 2015

Несмотря на то, что эти приложения загружают процессоры «по полной», включая и видеоядро, ультрабучный Broadwell оказался не сильно-то хуже настольных APU AMD — фактически уровень производительности, демонстрируемый им, A10-6800К и A10-7800 в «режиме 45 Вт» одинаковый. Но в штатном режиме A10-7800 заметно быстрее, а вот A10-7850К обгоняет его уже совсем незначительно, что делает его не самым лучшим на сегодня выбором.

Здесь и вовсе топовые APU AMD поголовно отстают от Core i7-5500U, что иначе как издевательством не назовешь 🙂 Распределение мест среди них почти не меняется. Разве что A10-6800K сумел не уступить A10-7800 с «зажатым» теплопакетом, но если в этом необходимости нет, то в новых версиях ПО последний предпочтительнее.

Работа с фотографиями аналогична обработке видео. Правда вот требования к производительности со стороны пользователя тут пониже, поскольку медлительность компьютера (при наличии таковой) мешает меньше — сами по себе рабочие процессы короче.

Adobe Illustrator бодро меняет номера версий, но сами по себе программные алгоритмы похоже все те же, что и 10 лет назад. С таким вот любопытным эффектом — флагман для FM2 даже чуть-чуть быстрее нового топового решения. Впрочем, незначительно.

В Audition же A10-6800К и A10-7850К примерно равны в пользу более нового процессора. Но сравнение с i7-5500U показывает, что это просто еще один «неудобный» для AMD случай. Совсем неудобный — где настольные модели процессоров проигрывают не только ноутбучным, но уже и ультрабучным (а если дело и дальше так пойдет, то скоро и планшетным начнут).

В предыдущей версии программы A10-6800К держался на уровне A10-7800 с TDP 65 Вт, сейчас же «сполз» на паритет с 45 Вт: как видим, обновление ПО положительно сказывается на внутрифирменной конкуренции. Правда маловато как-то полученного эффекта 🙂

А вот архиваторы, несмотря на все обновления кода, являются более «консервативными» приложениями, так что A10-7850K (не говоря уже о более медленных моделях) все еще не может догнать флагмана предыдущей линейки. Отставание, впрочем, микроскопическое, но оно есть. Что особенно расстраивает на фоне того, что у Intel нынче даже CULV-решения временами заметно быстрее.

Все примерно равны, за исключением A10-7800 в режиме сниженного TDP — судя по всему, для экономии энергии процессор пытается большую часть времени проводить в спящем режиме, выход из которого занимает определенное время, что особенно заметно при таких типах нагрузки.

А файловые операции чем-то похожи на, например, архиваторы, что не удивительно — распаковка ISO-образа идеологически близка к ним. Формально, впрочем, эти подтесты процессор работой почти не нагружают, так что разница между ними в основном обусловлена именно особенностями режимов энергосбережения.

Когда-то старшие модели APU AMD успешно конкурировали по производительности процессорной части с настольными Core i3. Теперь же, как видим, их способны обгонять и двухъядерные процессоры для ультрабуков, с чем мы компанию и «поздравляем». В общем, необходимость модернизации в этом семействе давно назрела. И жаль, что ее не будет еще как минимум год. Да и всякое может быть — обновление программного обеспечения в тестовой методике позволило, конечно, A10-7850K в общем зачете обойти более старый A10-6800K, но каких-то 5% прироста производительности, как нам кажется, вовсе не то, что требовалось. Основным же эффектом от выхода Kaveri оказалась возможность выпуска более экономичных моделей, типа A10-7800. Вот то, что этот процессор выступает на уровне A10-6800K при куда более «узком» теплопакете — уже хорошо. Хотя для конкуренции с Intel в области процессорной производительности все равно недостаточно. Но есть у продукции компании такой козырь, как мощное графическое ядро. Попробуем его разыграть.

Игровые приложения

По понятным причинам, для компьютерных систем такого уровня мы ограничиваемся режимом минимального качества, причем не только в «полном» разрешении, но и с его уменьшением до 1366×768 (Core i7-5500U в таком режиме протестирован не был, но нам сейчас это и не слишком важно — для качественного сравнения хватит и одного режима). Несмотря на то, что интегрированная графика настольных процессоров линейки A10 — это лучшее из того, что есть на рынке, пока еще даже она не способна удовлетворить требовательного к качеству картинки геймера. А вот если добровольно согласиться на «минималки», можно здорово сэкономить. Это мы уже хорошо знаем по предыдущим тестированиям, а сегодня просто посмотрим, как на этих процессорах работает наш обновленный игровой набор.

Производительность GPU в A10 почти вдвое выше, чем у HD Graphics 5500, что секретом не является. А результат — возможность играть пусть и в минимальном качестве, но в полном разрешении Full HD.

Игра очень процессорозависима, причем требуется ей в основном «однопоточная» производительность, так что тут уже оторваться от решений Intel не удается. Но с практической точки зрения это не так и важно — главное, что поиграть на всем можно.

Как и в Grid2. Где, впрочем, требования к GPU повыше, так что и какая-никакая разница между испытуемыми появляется.

Игры серии Metro как раз очень требовательны к графике, так что здесь и A10 пока еще не хватает на FHD, но достаточно для того, чтобы играть, снизив разрешение.

В Hitman старших Kaveri почти хватает на FHD, а при сниженном разрешении можно играть с комфортом.

Thief пока еще слишком «тяжел» для интегрированной графики, хотя определенный прогресс в этой области наблюдается, так что процессоры линейки Kaveri Refresh, возможно, уже и «вытянут» хотя бы режимы низкого разрешения.

Tomb Raider спокойно себя чувствует даже в режиме «полного» разрешения — тут и процессоров Intel лишь немного «не хватает». В общем, в такие игрушки поиграть уже как-то можно.

И два примера того, как переход с Richland на Kaveri дает уже не только количественный, но и качественный эффект при практически полном отсутствии межфирменной конкуренции.

Итого

Что ж, как видим, обновление программного обеспечения благотворно сказалось на Kaveri: новый флагман теперь хотя бы быстрее старого, поскольку ранее их равенство вызывало мягко говоря сложные чувства 🙂 Однако. Однако именно A10-7850K все равно выглядит не слишком интересно, поскольку появился A10-7800, производительность которого лишь немногим ниже, а требования к охлаждению — «ниже многим». Впрочем, на радикальный прорыв это все равно не тянет, поскольку собственно «как процессоры» APU слабее решений Intel. И слабее даже решений совсем других классов — в одном сегменте это можно было бы еще как-то перетерпеть. А вот в разных — эффект слабо компенсируется даже приличным видеоядром, поскольку геймеру все равно однозначно стоит смотреть в сторону дискретной графики, благо ее применение в настольных системах (пусть даже компактных) не несет никаких сложностей. Поэтому настольное семейство A10 так и остается нишевым решением: достаточно дорогим, но, тем не менее, не слишком игровым и не слишком производительным вне игр. Причем косметические доработки явно неспособны существенно изменить положение дел — тут уже не кровати переставлять надо, а девочек менять 🙂

Источник

Что такое а10 процессор

В каких устройствах используется процессор Apple A10?

Apple A10 Fusion дебютировал в смартфоне iPhone 7, а также в его «большой» версии 7 Plus. На дворе стоял 2016 год — на тот момент то был настоящий железный «зверь», своего рода король мобильных процессоров.

64-битный 4-ядерный A10, созданный по 16-нанометровому техпроцессу FinFET, получился настолько удачным, что купертиновцы, даже спустя три года после выхода, продолжают использовать старичка в новых устройствах. Именно A10 питает iPad 7-го поколения, представленный 10 сентября 2019 года.

Разумеется, все в этом мире имеет свойство заканчиваться, а применительно к технологиям — устаревать. Мы считаем, что 7-ое поколение iPad станет последним новым девайсом с A10 на борту. Впрочем, Apple все еще способна удивлять, поэтому все может быть.

Называем технику Apple с A10 внутри:

  1. iPhone 7 (2016) — По-прежнему актуальный смартфон, с обзором которого вы можете ознакомиться здесь.
  2. iPhone 7 Plus (2016) — Его «большой» собрат. Нам понравился.
  3. iPad 2018 (6-ое поколение) — Недорогой и функциональный планшет. Подробности в нашем обзоре.
  4. iPod Touch 2019 (7-ое поколение) — Дорогой и стильный компактный медиаплеер.
  5. iPad 2019 (7-ое поколение) — Читаем о новом планшете тут.

У A10 также есть усовершенствованная версия A10X . Ее Apple устанавливала в:

Источник