ARM представила новые мобильные ядра и графические ускорители

ARM презентовала новые ядра Cortex-A78 и Cortex-X1, графические ускорители Mali-G78 и G68, а также нейронный блок Ethos-N78. Все они лягут в основу будущих мобильных процессоров от Qualcomm, MediaTek, Samsung и других компаний, предлагая прирост производительности и поддержку новых технологий.

ARM

По заверениям ARM, выполненный по 5-нм техпроцесу Cortex-A78 является самым эффективным ядром Cortex-A из когда-либо созданных для мобильных устройств. В сравнении с Cortex-A77 прирост производительности составляет 20%. Достигается это в том числе благодаря увеличению тактовой частоты до 3,0 ГГц. Кроме того, Cortex-A78 потребляет на 50% меньше энергии в сравнении с Cortex-A77.

ARM

ARM также предлагает для своих партнёров новую линейку ядер Cortex-X, позволяющую компаниям создавать собственные уникальные процессоры под конкретные цели. Первым представителем этой линейки стал Cortex-X1, который демонстрирует до 30% большую максимальную производительность, чем Cortex-A77.

ARM

Новый нейронный блок Ethos-N78, как уверяет ARM, обеспечивает вдвое большую максимальную производительность в сравнении с предшественником. Он предназначен для обработки задач машинного обучения и искусственного интеллекта. Ethos-N78 будет предлагаться в более чем 90 различных конфигурациях для выполнения специализированных задач.

ARM

Помимо ядер Cortex были также представлены новые графические ускорители Mali-G78 и G68, построенные на архитектуре Valhall. Для Mali-G78, поддерживающего до 24 ядер, ARM заявляет о 25%-м приросте мощности в определённых ситуациях по сравнению с Mali-G77. В реальных сценариях использования, таких как игры, скачок производительности достигает 17%, а при выполнении задач машинного обучения — в среднем до 15%. Вместе с тем Mali-G78 потребляет меньше энергии, чем предшественник.

Mali-G68 — видеоускоритель среднего уровня. Он поддерживает только до шести ядер, но вместе с тем более энергоэффективен и занимает меньше места на кристалле.

Все представленные новинки стоит ждать в мобильных устройствах, которые выйдут в следующем году.

Источник



ARM как будущая архитектура для настольных ПК

Большинство привыкло к полярному рынку в мире процессоров — поле битвы делят Intel и AMD. Однако вполне вероятно, что ситуация изменится в ближайшем будущем, ведь компания Nvidia покупает фирму ARM — разработчика процессорных архитектур. Что же такое ARM и чем все это может обернуться для IT-индустрии?

Желудь из Кембриджа

Для начала стоит объяснить, что ARM обозначает одновременно и архитектуру процессоров (в данном случае Advanced RISC Machine) и название компании (ARM Limited). История берет свое начало с сотрудничества бывшего сотрудника крупной британской компании Sinclair Research Криса Карри и инвестора Германа Хаузера. В 1978 они основали компанию Cambridge Processor Unit (CPU), которая уже в 1979 была переименована в Acorn (Желудь). Такое названия было выбрано по одной простой причине — находиться в телефонном справочнике перед Apple.

Первым продуктом был карманный компьютер за 80 фунтов Acorn System 1, который стоил дешевле своего аналога ZX80, чем и запомнился многим пользователям.

Через два года Acorn получила крупный тендер от британской BBC (та самая радиовещательная компания) на создание компьютера для школ. Так появился BBC Micro, тираж которого превысил 1,5 миллионов устройств. Поступало даже предложение от Билла Гейтса с портированием MS-DOS на BBC Micro, но в Acorn от этого отказались.

Команда разработчиков увеличивалась и постепенно появилась идея перейти к более сложным технологиям, а именно работать с 16-разрядными процессорами. Сначала решили «прощупать» почву и отправились на экскурсию в компанию National Semiconductor. Ситуация крайне разочаровала разработчиков Acorn: над процессорами трудились сотни человек, но многочисленных ошибок и «проволочек» в разработке избегать не удавалось.

Совсем другая история была в Western Design Center, которую также посетили учредители. Там процессоры разрабатывали буквально несколько человек в «домашней» обстановке. Ведущий разработчик Acorn Роджер Уилсон был настолько впечатлен, что сам загорелся идеей разработки собственных процессоров, а не покупки как это предполагалось ранее.

В 1985 году появился первый процессор ARM на тогда популярной RISC-архитектуре. Вот только он был всего-лишь подключаемым дополнением для BBC Master (продвинутой версии ранее упомянутой BBC Micro).

Своеобразным прорывом стал ARM 2: до 64 Мб оперативной памяти, тактовая частота 8 МГц — для тех времен весьма впечатляющие показатели. Конкурентом был небезызвестный Intel 80368 с частотой 16 МГц. Разница в частоте была двукратная, но не в производительности. ARM 2 выполнял 4 миллиона операций против 5 миллионов у Intel 80368!

Перенасыщение рынка компьютеров в 1984 привело к сложному экономическому положению, и Acorn была куплена итальянским брендом Olivetti. Однако последующее заполнение рынка IBM PC и аналогами привело к тому, что вкладывать средства в архитектуру на базе RISC итальянцы не стали.

Новые союзники

Герман Хаузер искал способы сохранить процессорный бизнес и нашел союзника — Apple. Они же в 1990 проектировали инновационный карманный компьютер Newton, для которого энергоэффективные ARM подходили просто идеально. Третьим союзником стала компания VLSI Technologies, которая имела непосредственное отношение к производству интегральных схем.

В итоге появилась компания ARM, которая специализировалась исключительно на проектировании. Свою интеллектуальную собственность разработчики уже продавали по лицензиям другим компаниям.

Несмотря на то, что на рынке ПК главенствовала архитектура x86, ARM по-прежнему обеспечивала рабочие станции IBM и Sun Microsystems, а также огромный рынок микроэлектроники.

В чем главная особенность ARM

Во многом именно благодаря Apple после появления первого iPhone и iPad стала понятна значимость RISC-архитектуры. Потребление энергии процессоров было столь низким, что позволяло использовать их практически в любых портативных устройствах. Как не старалась Intel, добиться таких же показателей на х86 не получалось.

Итог — процессоры на ARM можно найти практически в любых портативных устройствах — смартфоны, GPS-навигаторы, игровые приставки, фото- и видеокамеры, телевизоры и не только. Как же так получилось, что принципиального в ARM? Ответом на этот вопрос является RISC-архитектура.

В существующей классификации можно выделить CISC (Complex Instruction Set Computing — комплексный набор инструкций) и RISC (Reduced Instruction Set Computing — сокращенный набор команд). Усовершенствование процессоров приводило к увеличению размера команды. В какой-то момент усложнения стали такими, что некоторые команды потребовали двух и больше тактов на исполнение.

Тогда в рамках проекта VSLI был предложен новый принцип — использовать команды заданной длины с заранее предопределенным расположением полей, а также дополнительно увеличить число общих регистров, благодаря которому процессору придется реже обращаться к ОЗУ. Проще говоря, сложные вычисления должны разбиваться на идентичные простые, обработка которых выполняется с большей эффективностью.

Так появилась RISC с сокращенным набором команд. С одной стороны, такой подход не позволял тягаться с устройствами на базе CISC, но уровень вычислительной мощности был достаточным для микроэлектроники, не говоря о мизерном тепловыделении.

ARM против x86/x64 — есть ли перспективы

Могут ли процессоры ARM тягаться с десктопными решениями от Intel или AMD. В одном из материалов был проведен крупный тест процессоров на архитектуре E2K (отечественные Эльбрусы), ARM (v6-v8) и x86 (i386) х86-64 (amd64). Использовались насколько тестов, в том числе LINPACK, который применяется для оценки производительности суперкомпьютеров.

Похожее:  Криптовалютный пузырь начал сдуваться а доходы майнеров падают как извлечь из этого пользу

Процессоры ARM были представлены следующими моделями: Amlogic S922X, Samsung Exynos 4412, Allwinner H5, Allwinner A64 и Broadcom BCM2837B0 (последний используется в миникомпьютере Raspberry PI 3).

Весь список результатов вы сможете изучить на этой странице, а мы приведем график для теста liNPACK:

Некоторые модели ARM-процессоров дотягиваются до уровня производительности Intel Atom. Аналогичную ситуацию можно видеть и на примере мобильного процессора Snapdragon 835. Исходя из тестов, он более чем в два раза проигрывает мобильным версиям Intel Core i5, не говоря уже про десктопные решения.

С другой стороны такие тесты нельзя назвать максимально объективными. Во-первых, большинство подборных программ ориентированы под x86/x64, поэтому для ARM часто приходится использовать эмуляторы, которые сказываются на результатах. Во-вторых, все рассматриваемые решения изначально ориентированы на мобильную электронику с минимальным тепловыделением и «жором» аккумулятора.

Однако можно ли использовать ARM для десктопных решений? Вполне вероятно, и первые звоночки уже есть. Каждые 6 месяцев выходит рейтинг ТОП-500 — список самых мощных суперкомпьютеров в мире. Ранее первые места занимали решения c Intel Xeon или Nvidia Volta, однако в рейтинге от сентября 2020 года самым мощным компьютером стал японский Fugaku. Беспрецедентный случай, ведь построен он именно на процессорах ARM (A64FX 48C). Замеры производительности показали 513,8 петафлопс. Много это или мало? Бывший лидер IBM Power Systems AC922 имеет всего 200,7 петафлопс — более чем в два раза меньше!

Конечно, в Fugaku целых 158 976 процессоров на 52 (48+4) ядра, но сам факт того, что на ARM можно строить столь производительные системы уже заслуживает внимания.

Второй звоночек — покупка ARM компанией Nvidia (подписание договора ожидается только к 2022 году), которая является крупнейшим игроком рынка с огромным опытом. Учитывая, что в сфере графических ускорителей они занимают главенствующие позиции, есть вероятность, что «зеленые» попробуют свои силы в сфере ЦП.

Возможно, Nvidia хочет выйти на мобильный игровой рынок. У компании уже существует платформа Tegra, которая объединяет в себе графическое ядро и ARM процессор. C новой покупкой Tegra вполне способна выйти за пределы смартфонов, смартбуков и КПК.

Также Apple объявила о переходе на процессоры ARM собственной разработки и отказ от продукции Intel. Это позволит сделать совместимыми приложения между MacOS и iOS. Как известно, линейка процессоров «A» всегда показывала выдающиеся результаты, благодаря чему iPhone находились в ТОПе самых производительных смартфонов. Однако достаточно ли таких наработок, чтобы заменить хотя бы Intel Core i5 — остается вопросом.

Сейчас у Apple есть только «демонстрационная технология» на базе процессора A12Z Bionic. Разработчики могут получить «девкит» за 779 долларов, но потом его придется вернуть (Apple во всей красе). Новинка A12Z будет установлена в iPad Pro 2020 и, судя по презентации, планшет прекрасно справляется с любыми пользовательскими задачами.

Более того, на процессоре получилось даже запустить Shadow of the Tomb Raider через эмулятор на средне-низких настройках, поэтому потенциал есть.

Если верить тестам за 2017–2018 гг., то iPad и iPhone уже практически дотягиваются до уровня i7 и даже i9, установленных в MacBook Pro.

Есть еще один игрок на рынке — фирма Ampere. Как заявляют представители, их 80-ядерный ARM-процесор превосходит AMD Epyc 7742 и Intel Xeon 8280, однако в тесте для AMD использовался понижающий коэффициент, который компенсировал недоработки пакета компиляторов.

Что ждет x86/x64

Стоит ли хоронить процессоры на x86/x64 — пока об этом рано говорить. Уже достаточно давно процессоры Intel и AMD разбивают входные инструкции на более мелкие микроинструкции (micro-ops), которые в дальнейшем, не удивляйтесь, исполняются RISC-ядром.

Те самые 4–8 ядер вашего процессора, это именно RISC-ядра. Проще говоря, ARM-технология является частью архитектуры x86/x64. Именно поэтому будущим может стать не тотальное вымирание, а именно более совершенная гибридная архитектура. С другой стороны, за счет уменьшения техпроцесса ARM может добиться производительности десктопных процессоров Intel и AMD, но с сохранением приемлемого энергопотребления.

Серверные решения на ARM уже реальность и даже весьма перспективная, а значит, не за горами и массовые процессоры для персональных компьютеров.

Источник

ARM представила мобильные графические процессоры Mali-G78 и Mali-G68

Компания ARM представила целый ряд интересных аппаратных средств, начиная с мобильного процессора Cortex-A78, который обещает повышение производительности на 20 процентов, и заканчивая Ethos-N78 NPU, который обеспечивает «беспрецедентные возможности машинного обучения» и 25 процентов увеличение производительности по сравнению с предшественником. Однако наиболее интересными новинками являются мобильные графические процессоры Mali-G78 и Mali-G68 на архитектуре Valhall.

Прошлогодний Mali-G77 был первым мобильным графическим процессором ARM на основе архитектуры Valhall, обеспечившим значительное улучшение производительности по сравнению с предшественниками. Новый графический чип Mali-G78 продолжает последовательное увеличение производительности, увеличивая её на 25 процентов в сравнение с предшественником и может включать до 24 ядер. Кроме увеличения производительности новый чип позволяет добиться большей энергоэффективности, поэтому мобильные устройства следующего поколения на данном mGPU должны обеспечить большую автономность при использовании игровых приложений.

Mali-G68 является новым мобильным графическим процессором классом ниже, который наследует все функции своего более мощного аналога, но может иметь только 6 ядерное исполнение. Очевидно, что он будет устанавливаться в доступных устройствах среднего уровня и обеспечит наилучшее соотношение цены и производительности для любителей мобильных игр с ограниченным бюджетом.

Благодаря этим новым мобильным графическим процессорам, компании ARM и Crytek объединяют усилия, чтобы представить движок CryEngine для устройств на ОС Android и «обеспечить графику настольного класса для мобильных устройств». Однако, на данный момент нет информации о сроках появления конкретных игр, которые будут работать на CryEngine.

Источник

Война за чипы: сменят ли ARM процессоры x86 и почему все зависит от Apple

В мире электроники два лагеря: мобильные гаджеты с процессорами ARM и классические компьютеры с x86. В статье разберемся в отличиях и изучим тренд, который задала Apple, перейдя на собственный ARM-чип M1 в настольных ПК

Содержание

Какими бывают процессоры: x86 и ARM

В мобильных устройствах (планшеты, смартфоны) и классических компьютерах (ноутбуки, настольные ПК, серверы) используются разные процессоры. Они по-разному взаимодействуют с операционными системами и программами — взаимной совместимости нет. Именно поэтому вы не сможете запустить привычные Word или Photoshop на своем iPhone или Android-смартфоне. Вам придется скачивать из AppStore или Google Play специальную версию софта для мобильных устройств. И она будет сильно отличаться от версии для настольного ПК: как визуально, так и по функциональности, не говоря уже о программном коде, который пользователь обычно не видит.

Процессоры для классических компьютеров строятся на архитектуре x86. Своим названием она обязана ранним чипам компании Intel c модельными индексами 8086, 80186 и так далее. Первым таким решением с полноценной реализацией x86 стал Intel 80386, выпущенный в 1985 году. Сегодня подавляющее большинство процессоров в мире с архитектурой x86 делают Intel и AMD. При этом у AMD, в отличие от Intel, нет собственного производства: с 2018 года им по заказу компании занимается тайваньская корпорация TSMC.

Похожее:  Полезные программы для процессора

Когда Acer, Asus, Dell, HP, Lenovo и любые другие производители классических компьютеров используют процессоры Intel или AMD, то им приходится работать с тем, что есть. Они вынуждены закупать готовые решения без возможности гибко доработать чипы под свой конкретный продукт. А свои собственные процессоры на архитектуре x86 никто из производителей ПК делать не может. Дело не только в том, что это крайне сложно и дорого, но и в том, что лицензия на архитектуру принадлежит Intel, и компания не планирует ее ни с кем делить. AMD же воевала в американских судах за право создавать чипы на архитектуре x86 со своим главным конкурентом более десяти лет в 1980-х и 1990-х годах.

Процессоры для мобильных устройств строятся на базе архитектуры ARM. И это не какая-то быстро и внезапно взлетевшая вверх молодая компания. Корни истории современной британской ARM Limited уходят далеко в 1980-е. Только в отличие от своих доминирующих на рынке «больших» ПК-конкурентов ARM Limited процессоры не делает. Бизнес компании построен на том, что она продает лицензии на производство чипов по своей технологии всем желающим. Причем возможности для доработки у лицензиатов максимально широкие — отсюда популярность и многообразие решений. Именно на основе архитектуры ARM Huawei делает свои мобильные чипы Kirin, у Samsung это Exynos, у Apple — серия Ax. В этот же список входят Qualcomm, MediaTek, NVIDIA и другие компании. А еще свои процессоры на ARM делает Fujitsu. Японцы назвали их A64X, и именно они в количестве 158 976 штук используются в самом мощном на момент выхода этой статьи суперкомпьютере в мире — Fujitsu Fugaku.

Из открытого подхода ARM вытекает и главный недостаток: архитектура очень фрагментирована. Для x86 достаточно написать программу один раз, и она будет одинаково стабильно работать на всех устройствах. Для ARM приходится адаптировать софт под процессоры каждого производителя, что замедляет и удорожает разработку. Ну, а главный недостаток x86 вытекает из отсутствия конкуренции. В последние годы Intel, например, много упрекали за медленный или порой вовсе едва ощутимый прирост производительности от поколения к поколению. Также есть проблемы с высокими уровнями нагрева и энергопотребления.

Архитектура процессоров: CISC, RISC, и в чем разница

Ключевое отличие между x86 и ARM кроется в разной архитектуре набора инструкций. По-английски — ISA, Instruction Set Architecture. В основе x86 изначально лежала технология CISC. Это расшифровывается как Complex Instruction Set Command — вычислительная машина со сложным набором инструкций. «Сложность» здесь в том, что в одну инструкцию для процессора может быть заложено сразу несколько действий.

Полвека назад, когда первые процессоры только появились, программисты писали код вручную (сейчас для этого есть компиляторы). Одну сложную команду на старом низкоуровневом языке программирования Assembler написать было гораздо проще, чем множество простых, досконально разъясняющих весь процесс. А еще сложная команда занимала меньше места, потому что код для нее был короче, чем несколько отдельных простых команд. Это было важно, потому что объем памяти в те времена был крайне ограничен, стоила она дорого и работала медленно. Заказчики от этого тоже выигрывали — под любой их запрос можно было придумать специальную команду.

Но вот архитектура самого процессора страдала. По мере развития микроэлектроники в чипах с CISC копились команды, которые использовались редко, но все еще были нужны для совместимости со старыми программами. При этом под них резервировалось пространство на кристалле (место, где расположены физические блоки процессора). Это привело к появлению альтернативной технологии RISC, что расшифровывается как Reduced Instruction Set Command — вычислительная машина с сокращенным набором инструкций. Именно она легла в основу процессоров ARM и дала им название: Advanced RISC Machines.

Здесь ставку сделали на простые и наиболее востребованные команды. Да, код поначалу писать было сложнее, поскольку он занимал больше места, но с появлением компиляторов это перестало быть значимым недостатком. Результат — экономия места на кристалле и, как следствие, сокращение нагрева и потребления энергии. Плюс множество других преимуществ.

Почему о превосходстве ARM заговорили только недавно и при чем здесь Apple?

Если архитектура ARM так хороша, то почему же Intel и AMD не бросили все и не стали строить свои чипы на ней? На самом деле, они не оставили технологию без внимания, и к сегодняшнему дню CISC в чистом виде фактически уже не существует. Еще в середине 1990-х годов процессоры обеих компаний (начиная с Pentium Pro у Intel и K5 у AMD) обзавелись блоком преобразования инструкций. Сложные команды разбиваются на простые и затем выполняются именно там. Так что современные процессоры на архитектуре x86 в плане набора инструкций гораздо ближе к RISC, чем к CISC.

Кроме того, важно понимать, что противостояние x86 и ARM — это прежде всего противостояние Intel (потому что AMD гораздо меньше во всех отношениях: от капитализации до доли на рынках) и множества разрозненных производителей чипов для мобильных устройств. Долгое время два направления развивались как бы отдельно друг от друга. У Intel не получалось сделать достаточно мощное и энергоэффективное решение на x86 для мобильных устройств, а производители ARM-процессоров не стремились на рынок «больших» ПК. В нише мобильных устройств хватало места всем, и конкурировать там было проще, чем на фактически монополизированном Intel рынке процессоров для традиционных компьютеров.

Однако в последние годы доминирующее положение Intel пошатнулась. Прежде всего из-за того, что бизнес компании перестал соответствовать ее же собственной производственной стратегии. Согласно прогнозу одного из основателей Intel Гордона Мура, количество транзисторов в процессорах должно удваиваться каждые два года за счет перехода на более компактный технологический процесс производства (измеряется в нанометрах — нм). Как раз за счет этого повышается производительность. Впоследствии впервые озвученный в середине 1960-х годов «Закон Мура» корректировался, но сегодня стало ясно, что бесконечным этот рост быть не может. Технологии Intel дошли до «потолка возможностей» и пока уперлись в него. Переход на 14 нм, а потом и на 10 нм сильно затянулся, в то время как AMD в партнерстве с TSMC уже работает по техпроцессу 7 нм, а первым 5-нанометровым процессором в мире стал Apple M1 на архитектуре ARM.

Решая множество технологических проблем с процессорами для «больших» компьютеров, Intel полностью упустила из вида рынок мобильных чипов, и теперь здесь господствуют решения ARM. Проблемы, кстати, при этом никуда не делись — чипы Intel для настольных ПК последних лет активно и справедливо критикуют. Мощные процессоры компании страдают от высокого нагрева и сильного энергопотребления, а энергоэффективные, наоборот, сильно ограничены в плане производительности.

Похожее:  Обзор водоблока CPU Bykski CPU XPH OCT PA quot Медные понты quot

Большинство производителей ноутбуков и компьютеров продолжают с этим мириться, и не уходят на ARM — не позволяет огромный багаж популярного софта и массовость их техники. Как вы помните, одна и та же программа не сможет работать и на x86 и, на ARM — ее нужно обязательно программировать заново. Но в 2020 году после почти 15 лет выпуска компьютеров с процессорами Intel компания Apple объявила о переходе на процессоры ARM собственной разработки. Они, кстати, тоже производятся внешним подрядчиком: на заводах уже упомянутой TSMC.

И это крайне важное заявление, потому что на рынке только у Apple есть все возможности для того, чтобы сделать этот переход успешным. Во-первых, компания сама разрабатывает процессоры на базе ARM много лет. Настольные M1 «выросли»

из мобильных чипов серии Ax. У производителей ПК на других ОС такого опыта нет или он сильно ограничен. Во-вторых, у Apple огромный опыт разработки собственных операционных систем: как мобильной, так и настольной. Конкуренты в основном используют Windows или «надстройки» для Android.

Остается совместить две системы (OS X для компьютеров, iOS для смартфонов), «заточенные» под разную архитектуру вместе, унифицировав софт, и это самый сложный пункт программы. Но и тут у Apple есть целая россыпь козырей. Это и лояльная аудитория, не готовая смотреть на продукцию конкурентов, но готовая подождать пока программы адаптируют под ARM. И собственный язык программирования Swift, который давно унифицировал процесс разработки ПО для iOS и OS X. И пусть небольшая в количестве устройств, но зато очень заметная доля на рынке ПК в деньгах, чтобы процесс адаптации «настольного» софта для x86 под работу с «мобильным» ARM стал интересен крупным разработчикам ПО. За примерами далеко ходить не надо: в Adobe на зов откликнулись одними из первых.

Немаловажно и то, что переход с Intel на ARM для Apple — далеко не первый опыт смены процессоров в своих устройствах. На Intel корпорация из Купертино переходила с PowerPC в 2005 году. А чипы PowerPC пришли на замену Motorola 68K в начале 1990-х.

Процессор Apple M1: чем он так хорош?

Apple M1 интересен не столько тем, что построен на базе технологий ARM, сколько своей архитектурой. Здесь на одной подложке собраны сам процессор, в котором по 4 производительных и энергоэффективных ядра, восьмиядерная графическая подсистема, нейромодуль для машинного обучения, огромные (по меркам процессоров) объемы кэш-памяти плюс тут же распаяна оперативная память. Такое решение занимает совсем мало места в корпусе компьютера, потребляет мало энергии (аккумулятор ноутбука дольше не разрядится) и может работать без активного охлаждения (ноутбук будет тихим или вовсе бесшумным) при хорошем уровне производительности.

И совсем не просто так первым компьютером Apple с процессором M1 стал MacBook Air. С одной стороны, это лэптоп, главными преимуществами которого как раз и должно быть все, что дает новый процессор: компактность, автономность, тишина. С другой стороны, это компьютер для наименее требовательных пользователей, которым практически не нужен никакой специфический софт — достаточно того, что сама Apple предлагает «из коробки»: браузера, проигрывателя, офисного пакета. А для софта, который под ARM адаптировать пока не успели, Apple использует встроенный эмулятор Rosetta 2.

Следующими ПК Apple с M1 после MacBook Air стали 13-дюймовый MacBook Pro и Mac Mini. Также недавно был анонсирован новый iMac. Такие машины уже ориентированы на задачи посерьезнее, но все равно это еще далеко не профессиональный сегмент — на него в Купертино пока лишь намекают. И именно здесь к решению Apple на базе технологий ARM возникает основной вопрос: получится ли «отмасштабировать» M1 до уровня профессиональных решений, где компактность и энергоэффективность не так важны, а на первый план выходит именно производительность? Как реализовать связку М1 с мощными дискретными видеокартами, без которых о монтаже, рендеринге и других сложных вычислениях говорить не приходится? Или может быть Apple вообще готовится к выпуску собственной дискретной графики? Вопросов пока куда больше, чем ответов на них.

Уже готовые компактные устройства Apple с чипами M1 выглядят действительно интересно, правда выигрыш в производительности в них явно ощущается в основном только в уже адаптированных под ARM программах, но зато он очень заметный. Так что если Intel и AMD не смогут дать достойный ответ конкуренту в нише энергоэффективных ПК, то рост популярности решений Apple не заставит себя ждать даже несмотря на то, что еще какое-то время софта будет не хватать. Массовому пользователю ведь много не нужно.

Источник

ARM представила новые мобильные ядра и графические ускорители

ARM презентовала новые ядра Cortex-A78 и Cortex-X1, графические ускорители Mali-G78 и G68, а также нейронный блок Ethos-N78. Все они лягут в основу будущих мобильных процессоров от Qualcomm, MediaTek, Samsung и других компаний, предлагая прирост производительности и поддержку новых технологий.

ARM

По заверениям ARM, выполненный по 5-нм техпроцесу Cortex-A78 является самым эффективным ядром Cortex-A из когда-либо созданных для мобильных устройств. В сравнении с Cortex-A77 прирост производительности составляет 20%. Достигается это в том числе благодаря увеличению тактовой частоты до 3,0 ГГц. Кроме того, Cortex-A78 потребляет на 50% меньше энергии в сравнении с Cortex-A77.

ARM

ARM также предлагает для своих партнёров новую линейку ядер Cortex-X, позволяющую компаниям создавать собственные уникальные процессоры под конкретные цели. Первым представителем этой линейки стал Cortex-X1, который демонстрирует до 30% большую максимальную производительность, чем Cortex-A77.

ARM

Новый нейронный блок Ethos-N78, как уверяет ARM, обеспечивает вдвое большую максимальную производительность в сравнении с предшественником. Он предназначен для обработки задач машинного обучения и искусственного интеллекта. Ethos-N78 будет предлагаться в более чем 90 различных конфигурациях для выполнения специализированных задач.

ARM

Помимо ядер Cortex были также представлены новые графические ускорители Mali-G78 и G68, построенные на архитектуре Valhall. Для Mali-G78, поддерживающего до 24 ядер, ARM заявляет о 25%-м приросте мощности в определённых ситуациях по сравнению с Mali-G77. В реальных сценариях использования, таких как игры, скачок производительности достигает 17%, а при выполнении задач машинного обучения — в среднем до 15%. Вместе с тем Mali-G78 потребляет меньше энергии, чем предшественник.

Mali-G68 — видеоускоритель среднего уровня. Он поддерживает только до шести ядер, но вместе с тем более энергоэффективен и занимает меньше места на кристалле.

Все представленные новинки стоит ждать в мобильных устройствах, которые выйдут в следующем году.

Источник